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A broader range of discourse study with LLMs

Lexical (Multi-)Sentence Document
“recently” /_\Ez \
_ = e ] investigation / \
My brother flew in to town. S1 S2 S3
; “simply” E1 happens before/after
! won't stand for Py PP E27 Correct ordering of S1, S2,
this injustice. : S37

E2 lains/ tradict
What is the sense of just in P am;cf:)on radiets How do S1, S2, S3 interact

these contexts? with each other?
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A broader range of discourse study with LLMs

Lexical (Multi-)Sentence Document

a )
Discourse understanding requires lexical &
semantic, temporal, rhetorical, commonsense...
knowledge.
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How well do modern LLMs understand discourse? ﬁ O
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BeDiscovER: Level — Task — Dataset
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BeDiscovER: Level — Task — Dataset
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Evaluation Setting

4 N

Open-ended Question-Answer Formatting
- Unified evaluation pipeline

- Classification tasks (1 2 3): fixed label space

- Parsing task (5): incremental generation task
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Reasoning-oriented LLMs &
GPT-5 Qwen3 DeepSeek-r1

Non reasoning-oriented LLMs (O

\_ Lidma-4 Y,
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Evaluation Setting

6ystem prompt:
.. Choose one of the following six labels: [Exclusionary,
Unelaboratory, Unexplanatory, Emphatic, Temporal,

Adjective].

User prompt:
My brother flew in to town.

Question: What is the function of the discourse marker jUSt

~

in the sentence above?
I Temporal I
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Performance: model scaling
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Bigger the model, better the performance — expected!
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Performance: reasoning-oriented vs. non-reasoning LLMs

Accuracy
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Reasoning-oriented LLMs outperform
non-reasoning optimized LLMs.
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Performance: higher reasoning effort, better result?

Accuracy
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[ Higher thinking effort does not yield better outcome ]
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Performance: higher reasoning effort, better result?
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Performance: LLMs vs. supervised =—r--i.|=i=
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performance (~10-30%) compared to supervised

Reasoning-oriented LLMs show markedly lower &
Lmodels, despite their larger size. %
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Performance: fine-grained sense disambiguation
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Performance: multilingual performance
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Summary: benchmark and evaluation baseline
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Summary: benchmark and evaluation baseline

e Reasoning-oriented LLMs capture some discourse-level
knowledge, especially good in arithmetic aspect of temporal
reasoning.

e But they struggle with subtle semantic and discourse
phenomena (like rhetorical relation classification) and
long-dependency reasoning (dialogue parsing).

outcomes in reasoning models.

e Longer reasoning traces do not necessarily yield better
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