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e Emergent Capabilities: Large proprietary Language Models (LLMs) such as GPT-4 have shown impressive
performance on professional benchmarks in the health domain.
e Interpretable Explanations: LLMs can generate interpretable explanations to their predictions, providing clinical
doctors with valuable insights into their reasoning.
e Considerations in Healthcare Domain: Third-party commercial LLMs is not always feasible due to concerns
about traceabillity, privacy, and security.

In this paper, we explore using small (e.g., less than 10B), cost-effective open-source Foundation Models such
as Llama-3.1-8B (language-only) and Llama3-LLaVA-NeXT (vision language model) for AD detection.

Task and Dataset

e Task: Cookie Theft Picture Description.

e Canary dataset [1]: it contains 130 participants where
6/ are healthy controls and 63 are AD patients.
Patients are diagnosed or exhibiting initial symptoms

potentially progressing to AD.

Picture description task

“You will be shown a picture on the
screen. Describe everything you see
going on in this picture. Try not to look
away from the screen while
describing the picture.”
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e Prompt engineering is a popular and effective way for using LLMs without altering their parameters.
e We design our prompts in a systematic way to unleash the inner specialist capabilities of LLMs, including:

o Background prompt: with cue phrases “Rol
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Group # Age Gender MoCA
Pattent 63 72+9 31IM/34F 1847
Control 67 62+ 15 22M/45F 27 +3

Table 1: Dataset demographic and clinical statistics.
MoCA stands for Montreal Cognitive Assessment score.

[1] Hyeju Jang et al. 2021. Classification of alzheimer’s disease leveraging
multi-task machine learning analysis of speech and eye-movement data.

Frontiers in Human Neuroscience.
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Result Distillation

: . : : — Class:
"To classify the participant as a dementia patient (P) or healthy Da%?;%
control (H), we'll analyze the description step-by-step: I
1. **Description of the scene** .... Confidence:
0.8
Based on these observations, | would classify the participant as -
a dementia patient (P) with a probability of 0.8." Reasoning:

— 1. Description...

"Step-by-step explanation: 1. The image depicts a family in a 9'3353

kitchen. 2. The boy is standing on a stool Healthy control

Confidence:

Given these observations, the participant is likely a healthy high

control (H) with a high probability. " Reasoning:
— 1. The image...

Context”, and “Linguistic cues”

o Example prompt: In-Context Learning pairs, we employ fixed (random) and dynamic (kNN) selection with

one positive and one negative demonstration.
o Question prompt: compare Short answer, Chain-of-thought (Col), and Guided Colfor LLM output.
o Each prompt setting was run 6 times with a lower temperature (0.1) to mitigate model instability.

Results and Take-aways

e Comprehensive background prompt and
CoT reasoning gives optimal performance,

even surpass supervised classifiers.

Background Question AUC Sensitivity  Specificity
Role Short 60.3+1.1 964+08 11.5+0.8
CoT 656.8+ 0.5 91.13+1.1 246+ 2.5
G.CoT T709+04 B84.7+11 354+21
Context Short 694+15 359+20 935+14
CoT 689+06 508+11 73.9+21
G.CoT 743+11 694+22 69.3+0.0
Context Short 716+05 726+00 69.6+14
+Role CoT 729+38 702+34 708+43
+Ling G.CoT |[761+20 | 718+34 739+2.1
Supervised Classifiers
GNB 728+ 2.2 641+22 66.5+3.5
LR 73.2+17 685+38 70.2+1.6
RF 7.2+31 67.7+46 73.1+3.6

e Vision-language model (VLMs) like LLaVA, despite its
additional vision (image), underperforms language-only
LLMs like Llama, both in zero-shot and few-shot settings.

e Sanity check on LLaVA reveals that it's unable to generate
normal speech during the picture description task, raising

open questions on VLMs compositional capabillities.
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