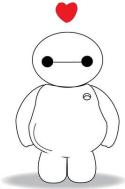


a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA



Delta-KNN: Improving Demonstration Selection in In-Context Learning for Alzheimer's Disease Detection

Chuyuan Li, Raymond Li, Thalia S. Field, Giuseppe Carenini

Department of Computer Science
The University of British Columbia

chuyuan.li@ubc.ca

1 Healthcare Task: Alzheimer's Disease Detection

Alzheimer's Disease

- Severe neurodegenerative disorder, leads to **dementia**.
- Affecting **55 million** people worldwide.
- Among one of the **most costly** diseases.
- **Early prevention** is crucial.
 - Symptoms, e.g. **language disorders**

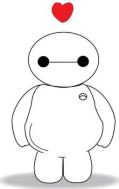
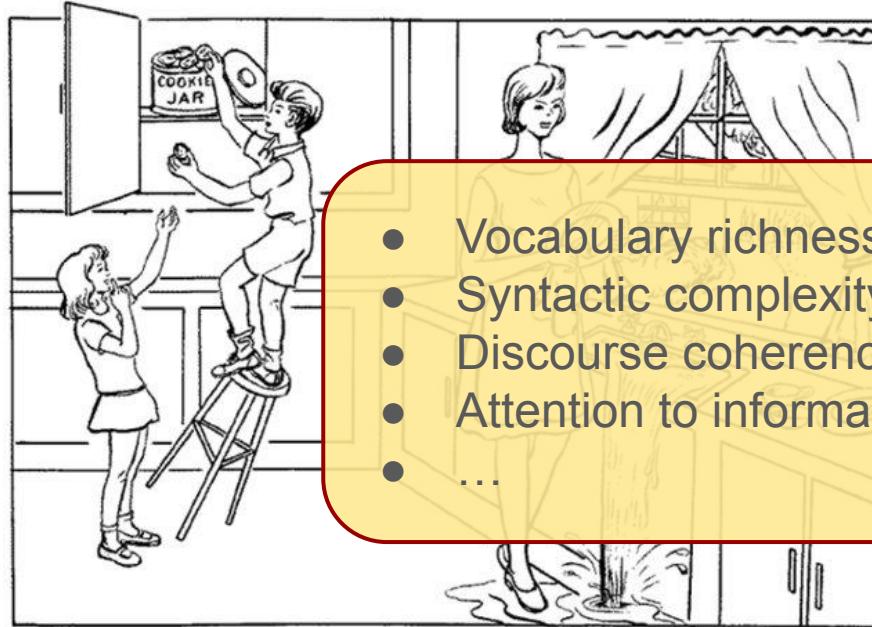



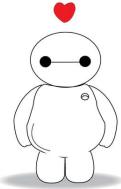
Image credit: <https://leafcare.co.uk/blog/alzheimers-disease-symptoms-and-causes/>



1 Healthcare Task: Alzheimer's Disease Detection

Dementia detection from patient-generated discourse

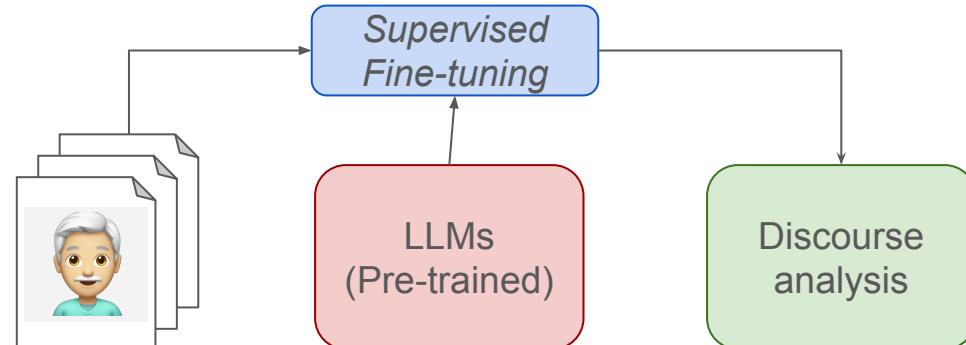
- The Cookie Theft picture description task



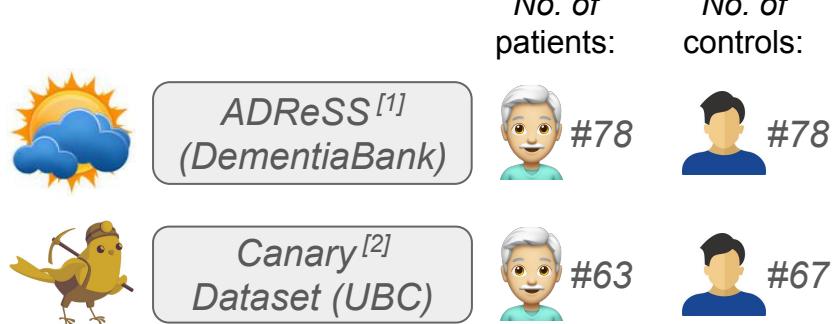
Please describe everything you see going on in this picture.

- Vocabulary richness
- Syntactic complexity
- Discourse coherence
- Attention to information units
- ...

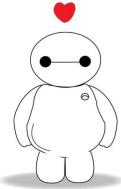
Well the sink is running over. She's drying the dishes. They're getting in the cookie jar ...



2 Improving LLMs In-Context Learning for AD Detection

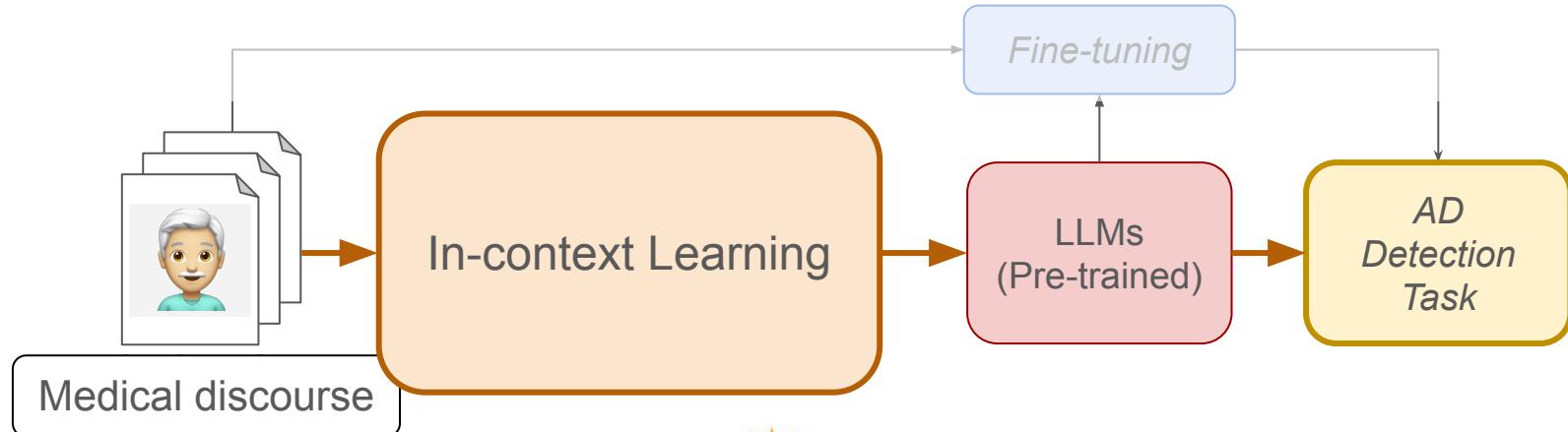


In-context learning for LLMs


Medical discourse

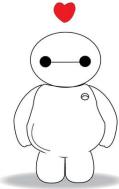
- Challenges:
 - Extreme limited data
 - Unstable in fine-tuning

[1] Luz, Saturnino, et al. "Detecting cognitive decline using speech only: The adreso challenge." In INTERSPEECH 2021. ISCA. 903.


[2] Jang, Hyeju, et al. "Classification of Alzheimer's disease leveraging multi-task machine learning analysis of speech and eye-movement data." Frontiers in Human Neuroscience 15 (2021): 716670.

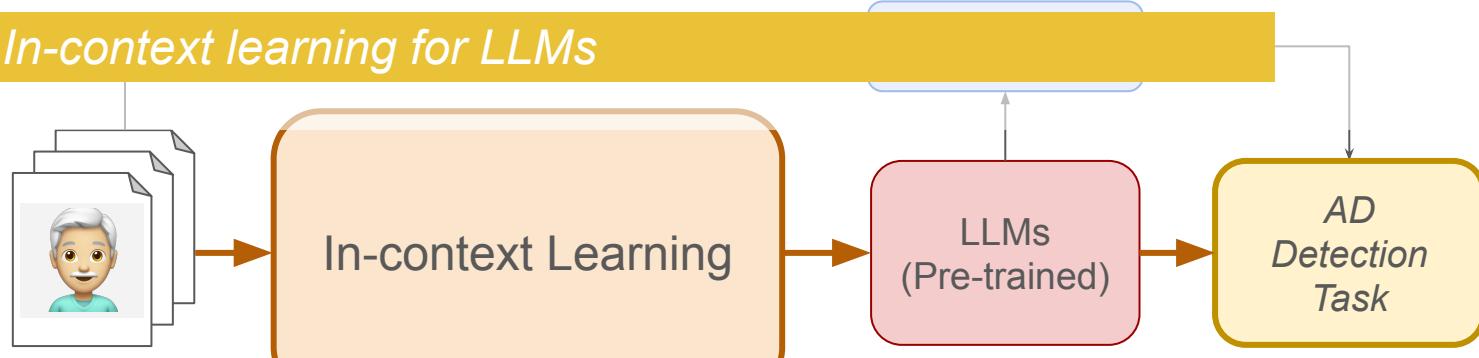
2 Improving LLMs In-Context Learning for AD Detection

In-context learning for LLMs



- Challenges:
 - Extreme limited data
 - Unstable in fine-tuning

[3] Luz, Saturnino, et al. "Detecting cognitive decline using speech only: The adreso challenge." In INTERSPEECH 2021. ISCA. 903.


[4] Jang, Hyeju, et al. "Classification of Alzheimer's disease leveraging multi-task machine learning analysis of speech and eye-movement data." Frontiers in Human Neuroscience 15 (2021): 716670.

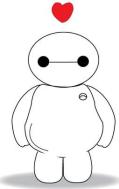
2 Improving LLMs In-Context Learning for AD Detection

In-context learning for LLMs

- Few-shot learning
- Random sampling
- Challenges:
 - Extreme limited data
 - Unstable in fine-tuning

General, representative

Similarity-based


Semantically similar

$H(Y|X)$ Text-understanding-based

Conditional entropy / perplexity

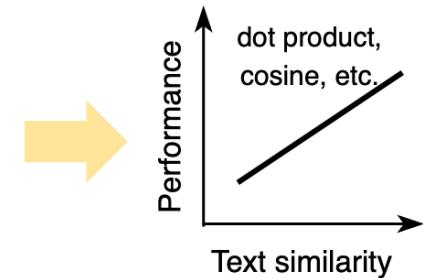
[3] Luz, Saturnino, et al. "Detecting cognitive decline in Alzheimer's disease using speech analysis of speech and eye-movement data." *Frontiers in Human Neuroscience* 15 (2021): 716670.

[4] Jang, Hyeju, et al. "Classification of Alzheimer's disease using speech and eye-movement data." *Proc. INTERSPEECH 2021. ISCA*. 903.

2 Improving LLMs In-Context Learning for AD Detection

Method: In-context learning via demonstration selection

- Related work

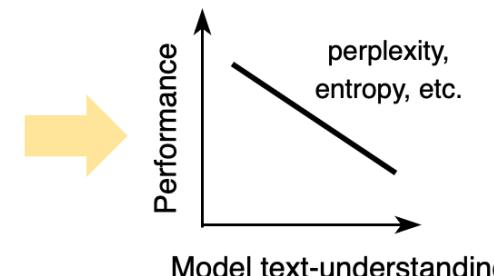

ACL DeeLIO workshop 2022 [3]

What Makes Good In-Context Examples for GPT-3?

Jiachang Liu^{1*}, Dinghan Shen², Yizhe Zhang³, Bill Dolan⁴, Lawrence Carin¹, Weizhu Chen²

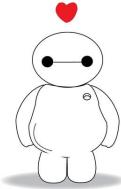
¹Duke University ²Microsoft Dynamics 365 AI ³Meta AI ⁴Microsoft Research

¹{jiachang.liu, lcarin}@duke.edu
³yizhe.zhang@hotmail.com
^{2,4}{dishen, billdol, wzchen}@microsoft.com



ACL 2024 [4]

Revisiting Demonstration Selection Strategies in In-Context Learning


Keqin Peng¹, Liang Ding^{2*}, Yancheng Yuan^{3*}
Xuebo Liu⁴, Min Zhang⁴, Yuanxin Ouyang¹, Dacheng Tao⁵

¹Beihang University ²The University of Sydney ³The Hong Kong Polytechnic University
⁴Harbin Institute of Technology, Shenzhen ⁵Nanyang Technological University
keqin.peng@buaa.edu.cn, liangding@gmail.com

[3] Liu, Jiachang, et al. "What Makes Good In-Context Examples for GPT-3?." *Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures*. 2022.

[4] Peng, Keqin, et al. "Revisiting Demonstration Selection Strategies in In-Context Learning." *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. 2024.

2 Improving LLMs In-Context Learning for AD Detection

Method: In-context learning via demonstration selection

Related work

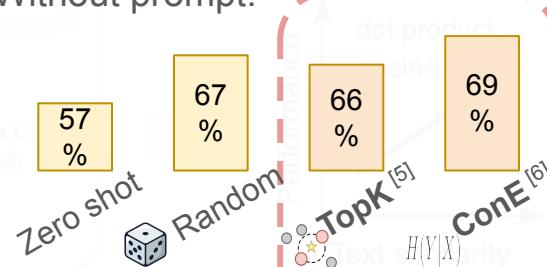
- **Good performance on:**

✓ Question answering

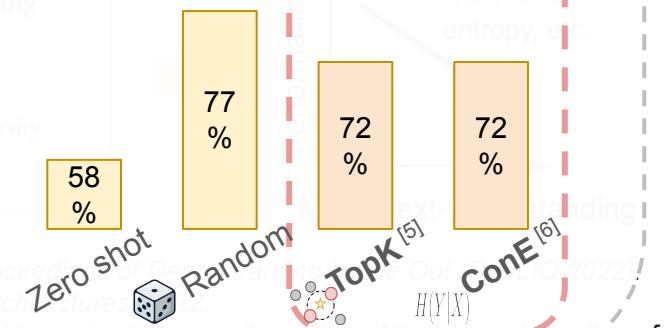
✓ Commonsense reasoning

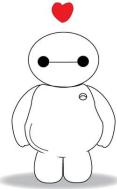
✓ SQL generation

Revisiting Demonstration Selection Strategies in In-Context Learning


...

- **Need to be studied on:**


? AD Detection (medical discourse)


[3] Liu, Jiachang, et al. "What Makes Good In-Context Examples for GPT-3?" *Proceedings of The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures (Volume 1: Long papers)*. 2024.

Without prompt:

R.+C.+L. Guided GoT prompt:

2 Improving LLMs In-Context Learning for AD Detection

Method: In-context learning via demonstration selection

•

• Good performance on:

✓ Question answering

✓ Commonsense reasoning

✓ SQL generation

- Longer context
- Subtle linguistic differences

- Complex conceptual understanding

?

AD Detection (Medical discourse)

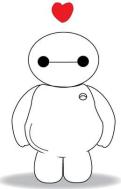
Without prompt:

57 %

67 %

66 %

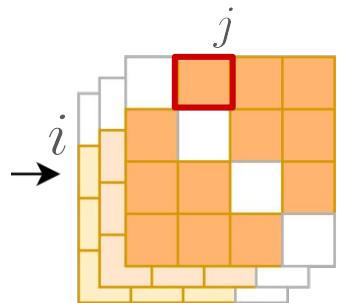
69 %


R.+C.+L. Guided GoT prompt:

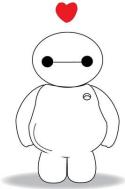
58 %

77 %

70 %

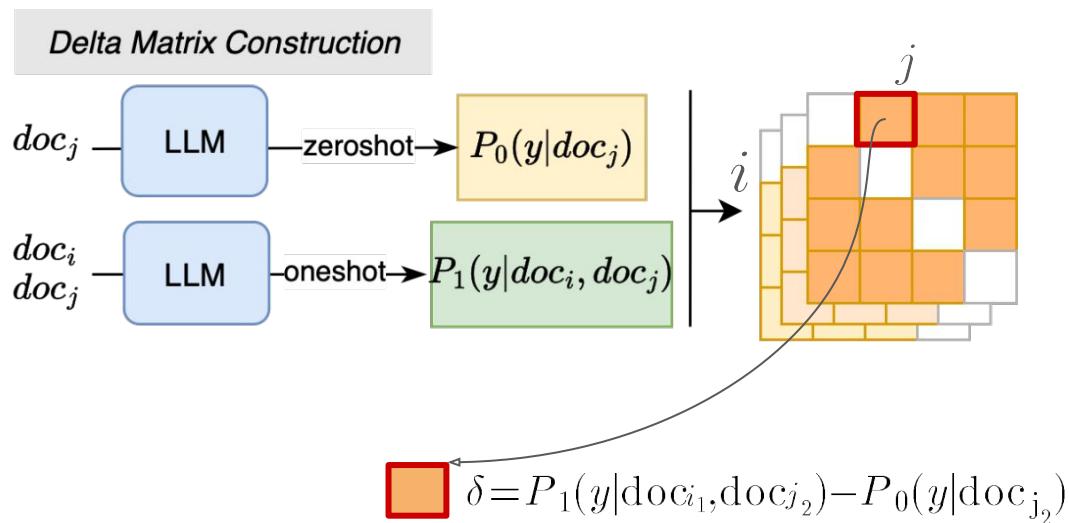

72 %

2 Improving LLMs In-Context Learning for AD Detection

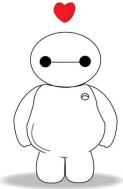


Method: In-context learning via demonstration selection

Delta Matrix

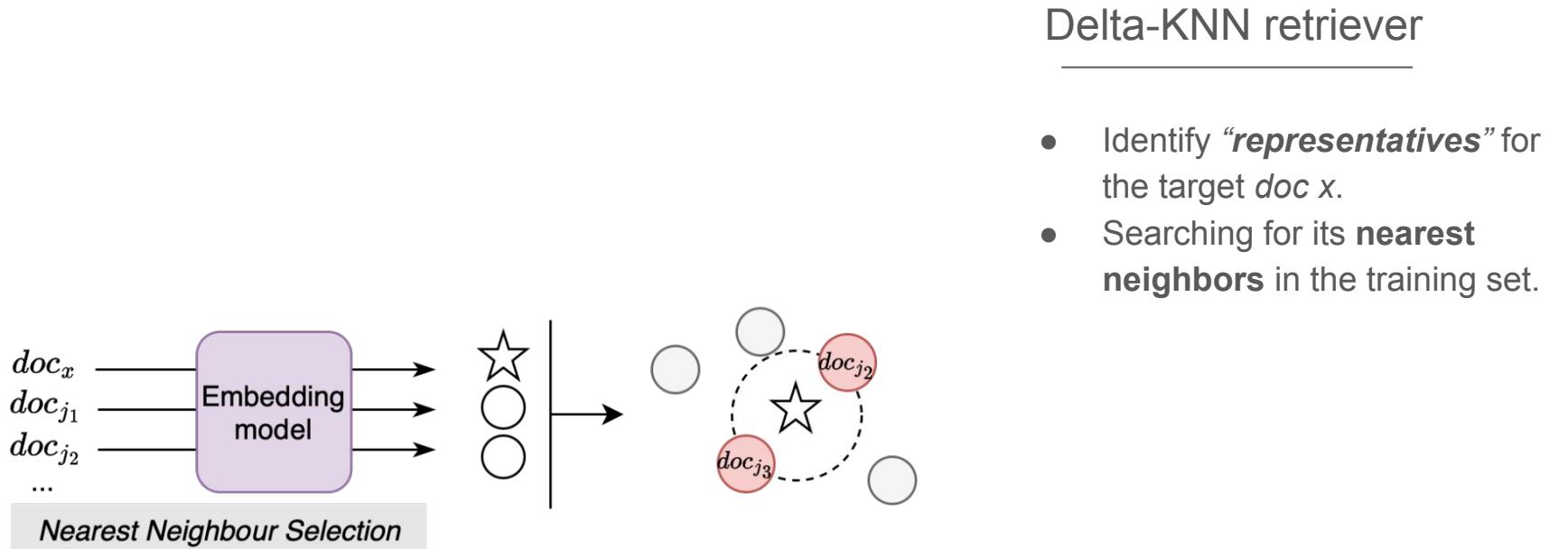

- A “look-up” table
- **Relative gain** contributed by a demo example *doc i* to a target *doc j*.

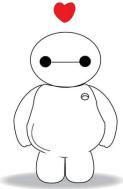
2 Improving LLMs In-Context Learning for AD Detection



Method: In-context learning via demonstration selection

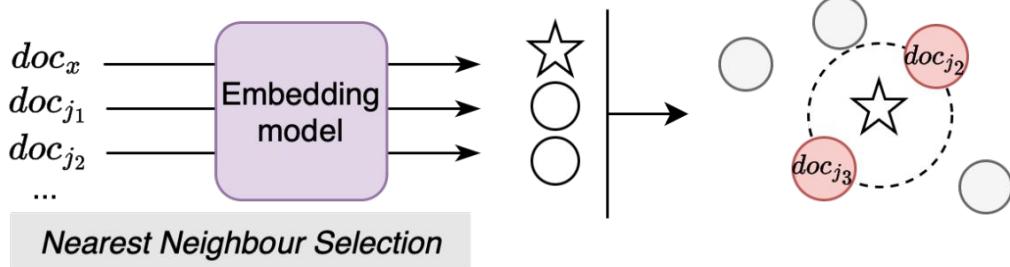
Delta Matrix


- A “look-up” table
- **Relative gain** contributed by a demo example $doc i$ to a target $doc j$.
- **Gain = Delta score:** difference between one-shot (P_1) and zero-shot (P_0) performance.

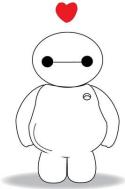


2 Improving LLMs In-Context Learning for AD Detection

Method: In-context learning via demonstration selection



2 Improving LLMs In-Context Learning for AD Detection


Method: In-context learning via demonstration selection

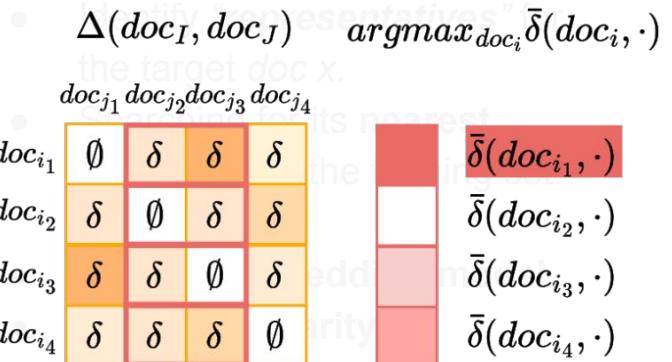
Delta-KNN retriever

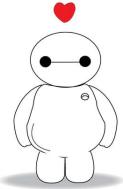
- Identify “*representatives*” for the target doc_x .
- Searching for its **nearest neighbors** in the training set.
- Open-AI **embedding model**¹.
- **Cosine similarity**.

1. The latest text-embedding-3-large model (<https://openai.com/index/new-embedding-models-and-api-updates/>)



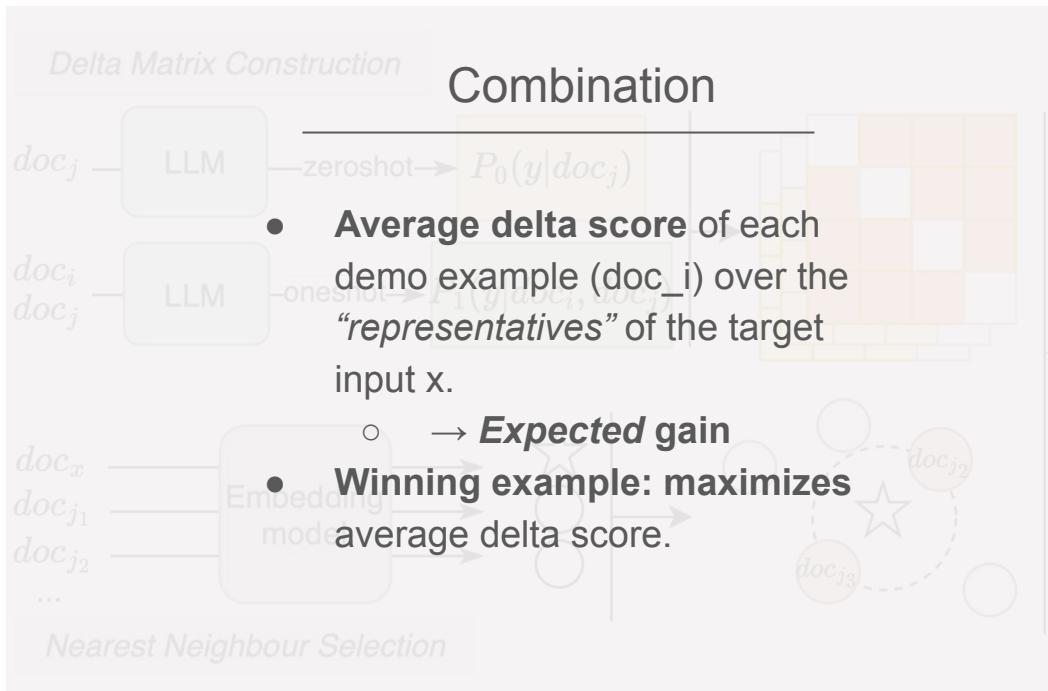
2 Improving LLMs In-Context Learning for AD Detection


Method: In-context learning via demonstration selection


Delta Matrix Construction

Nearest Neighbour Selection

Delta-KNN retriever



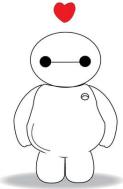
2 Improving LLMs In-Context Learning for AD Detection

Method: In-context learning via demonstration selection

Delta-KNN retriever

- $\Delta(doc_I, doc_J) = argmax_{doc_i} \bar{\delta}(doc_i, \cdot)$
- $doc_{j_1} doc_{j_2} doc_{j_3} doc_{j_4}$

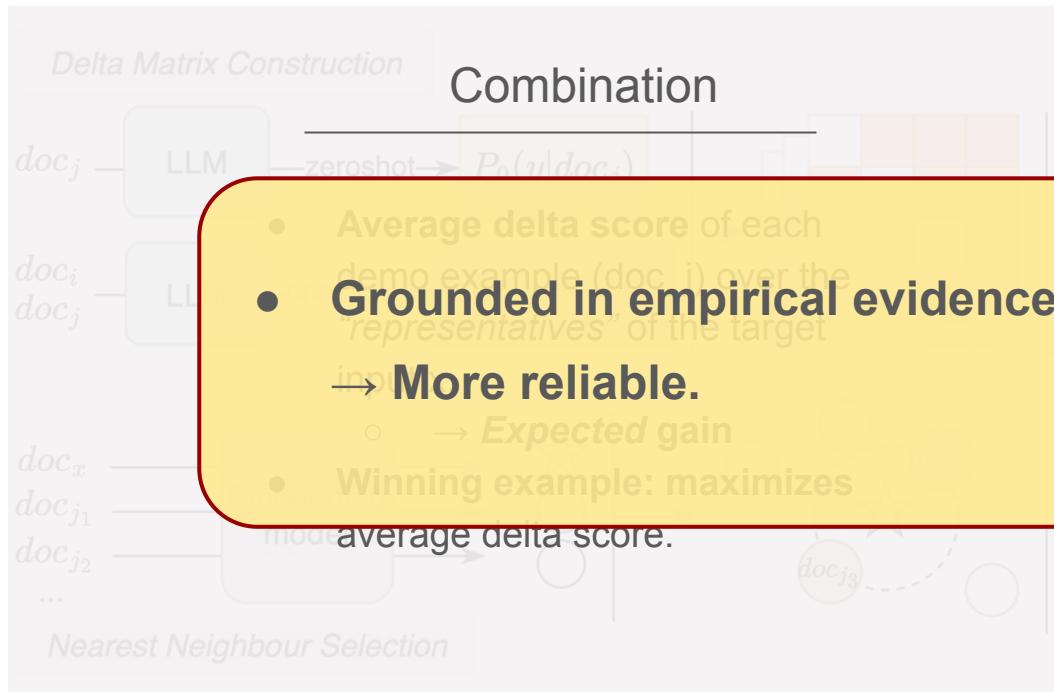
→


doc_{i_1}	\emptyset	δ	δ	δ
doc_{i_2}	δ	\emptyset	δ	δ
doc_{i_3}	δ	δ	\emptyset	δ
doc_{i_4}	δ	δ	δ	\emptyset

$\bar{\delta}(doc_{i_1}, \cdot)$

$\bar{\delta}(doc_{i_2}, \cdot)$

$\bar{\delta}(doc_{i_3}, \cdot)$


$\bar{\delta}(doc_{i_4}, \cdot)$

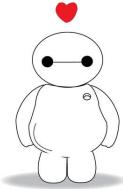
2 Improving LLMs In-Context Learning for AD Detection

Method: In-context learning via demonstration selection

- Average delta score of each demo example (doc_j) over the 'representatives' of the target
- **Grounded in empirical evidence of performance gains**
 - **More reliable.**
 - **Expected gain**
 - **Winning example: maximizes average delta score.**

Delta-KNN retriever

$$\Delta(doc_I, doc_J) = \arg\max_{doc_i} \bar{\delta}(doc_i, \cdot)$$


$\rightarrow doc_{i_1}$	\emptyset	δ	δ	δ
doc_{i_2}	δ	\emptyset	δ	δ
doc_{i_3}	δ	δ	\emptyset	δ
doc_{i_4}	δ	δ	δ	\emptyset

$\bar{\delta}(doc_{i_1}, \cdot)$

$\bar{\delta}(doc_{i_2}, \cdot)$

$\bar{\delta}(doc_{i_3}, \cdot)$

$\bar{\delta}(doc_{i_4}, \cdot)$

2 Improving LLMs In-Context Learning for AD Detection

Experiments and Results

Llama-3.1-8B-Instruct

Zero-shot Prompting

Accuracy

58.0%

ICL Random Sampling

77.7%

ICL Top- k Selection

72.4%

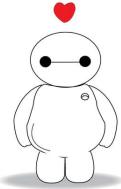
$H(Y|X)$

ICL Conditional entropy-based Selection

72.4%

SVM Classifier (linguistic features)

79.9%


BERT Fine-tuned Classifier

79.3%

ICL Delta-KNN (ours)

83.6%

2 Improving LLMs In-Context Learning for AD Detection

Experiments and Results

Llam

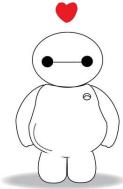
	ADReSS-train	ADReSS-test	Canary
<i>Mistral-7B-Instruct-v0.3</i>			
Zero-shot	52.3 _{0.5}	67.7 _{1.0}	63.1 _{0.8}
Random	62.0 _{2.8}	70.8 _{2.1}	55.0 _{0.4}
Top- k Select.	53.2 _{2.3}	63.5 _{3.1}	62.3 _{0.0}
CE Select.	61.1 _{1.9}	66.7 _{4.2}	58.8 _{3.5}
Ours	69.9_{1.4}	76.0_{5.2}	72.3_{0.4}
<i>Qwen2.5-7B-Instruct</i>			
Zero-shot	61.6 _{0.5}	66.8 _{2.2}	63.5 _{0.4}
Random	62.0 _{2.8}	57.3 _{1.0}	64.6 _{3.8}
Top- k Select.	58.8 _{1.4}	66.7 _{2.1}	53.1 _{6.2}
CE Select.	58.8 _{0.5}	65.8 _{5.3}	60.0 _{1.5}
Ours	63.4_{0.5}	67.7_{0.0}	66.1_{2.7}

ICL Delta-KNN (ours)

acy

7%

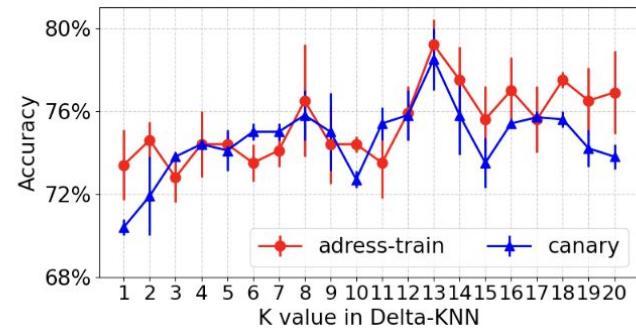
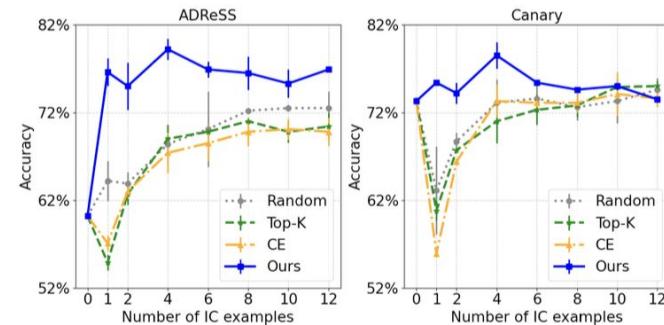
4%


4%

9%

3%

83.6%

2 Improving LLMs In-Context Learning for AD Detection

Further Investigation

- Impact of **in-context examples N**: Ours shows immediate advantage at $N=1$, peaking at $N=4$, after it stabilizes.
- Impact of **Demonstration Ordering**: Ours achieves higher maximum and average accuracy across 24 possible orderings in the 4-shot setting, with lower standard deviation.
- Impact of **Prompt Engineering**: Seven prompt variations, ours consistently outperforms ICL baselines.
- Impact of **k value in Delta-KNN**: Varying k from 1 to 20 on train sets, found $k=13$ yields the best results on both datasets.

Thank you!

Chuyuan Li, Raymond Li, Thalia S. Field, Giuseppe Carenini

Welcome to our poster if you have any question or would like to learn more!