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In the age of Large Language Models

Encoder-decoder 
Models
• T5 
• Flan-T5
• T0
• …

Decoder-only Models
• GPT-3.5, GPT-4
• Llama2, Llama-3.1
• Mistral
• …

Remarkable ability

Text understanding
Generation

Coding 
Reasoning

…
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In the age of Large Language Models

Our Research Goal: 

Leverage LLMs for discourse structure 
prediction without (as far as possible)  explicitly 
designing parsing modules or changing the 
architecture of LLMs.

Our Approach:

Turning parsing task into a seq2seq generation 
task, so that we can leverage latent knowledge 
captured by powerful LLMs.
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In the age of Large Language Models
Inspired by the promising results in other structure prediction tasks, e.g., coreference resolution, 
semantic parsing, etc.

In this paper, we tackle the challenging Discourse Parsing task with LLMs.

TACL 2023

IW3C2 2021

ICLR 2021

EMNLP 2023
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e1: How do people know about the game?  

e2: I did the trials.

e3: I know about it from my boyfriend.

e4: Yeah me too.

e5: I did not do the trials.

e6: I did them,

e7: because a friend did.

SDRT-style discourse parsing
(Segmented Discourse Representation Theory)

Input: sequence of utterances Output: graph-like structure

How to turn discourse parsing into sequence generation?
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e1: How do people know about the game?  
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e3: I know about it from my boyfriend.

e4: Yeah me too.
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e6: I did them,

e7: because a friend did.
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e1: How do people know about the game?  

e2: I did the trials.

e3: I know about it from my boyfriend.

e4: Yeah me too.

e5: I did not do the trials.

e6: I did them,

e7: because a friend did.

SDRT-style 
discourse parsing
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e1: How do people know about the game?  

e2: I did the trials.

e3: I know about it from my boyfriend.

e4: Yeah me too.

e5: I did not do the trials.

e6: I did them,

e7: because a friend did.

SDRT-style 
discourse parsing

(e1, e2, QA pair)

(e1, e3, QA pair)

(e2, e4, Parallel)

(e3, e5, Elaboration)
…

Input: sequence of utterances As sequence of triplesOutput: graph-like structure

Structure 
linearization

How to turn discourse parsing into sequence generation?
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Outline

– Choice of LLM

– Dialogue Discourse Parsing (DDP) and Seq2Seq 
Modeling 

– First approach: Seq2Seq-DDP
– Second approach: Seq2Seq-DDP + Transition

– Evaluation

– Analysis and Future Work
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Choice of LLM

We choose T5 family model: T0
• C4 corpus, 356 billion tokens
• Pretrained on tasks such as multi-doc question 

answering, natural language inference

•         Good contextual representation for 
sentence-level reasoning

•         Applied on other structure prediction tasks
• Coreference resolution [Zhang et al., 2023, 

Bohnet et al., 2023, Paolini et al., 2021]
• Semantic parsing [Rongali et al., 2020]
• Syntactic parsing [He and Choi, 2023]
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Discourse Parsing and Seq2Seq Modeling

Discourse parsing
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Discourse Parsing and Seq2Seq Modeling

Discourse parsing

Seq2Seq modeling
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Discourse Parsing and Seq2Seq Modeling

Discourse parsing

Seq2Seq modeling

14



Discourse Parsing and Seq2Seq Modeling

Discourse parsing

Seq2Seq modeling

15

• Translation of D to x and F to y
• Straightforward from D to x
• What about from F to y? 

• à “Linearization” process for structured object F



Discourse Parsing and Seq2Seq Modeling

Discourse parsing

Seq2Seq modeling
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• Translation of D to x and F to y
• Straightforward from D to x
• What about from F to y? 

• à “Linearization” process for structured object F

• Conditional probability p(y|x)
• What is x?

• The whole document or some utterances?
• à Two approaches: end-to-end approach and 

transition-based approach



First approach: Seq2Seq-DDP
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• Y(natural) is a sequence of elements with a structure: 
• Close to natural language

• Use EDU markers to represent utterance

• Example for the 1st pair:  “e2 is elaboration of e1”

• Y(augmented) is a sequence of elements with structure: 
• Scheme also used in semantic role labeling and coreference resolution tasks

• Replicates the input sentence and augments it with EDU marker, link and relation

• Example for the 1st  pair: “[ Dave: I can trade wheat or clay | e2 | Elaboration = e1 ]”



• Y(natural) is a sequence of elements with a structure: 

• Y(augmented) is a sequence of elements with structure: 

• With a full document x as input, the output looks like: 

First approach: Seq2Seq-DDP
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• Y(natural) is a sequence of elements with a structure: 

• Y(augmented) is a sequence of elements with structure: 

• With a full document x as input, the output looks like:

• Last step: from Y(natural) and Y(augmented) sequences to the target discourse graph with a simple 
decoding algorithm.

First approach: Seq2Seq-DDP
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Pros
• Straightforward linearization process

• Straightforward conditional probability 
calculation p(y|x)

         where x = 

Cons
• Weak supervision in long sequences. The longer 

the document, the harder it is for the model to 
retrace previous predictions.

• Consecutive output requires extra attention to 
some properties such as counting, which LLMs 
struggle with (Kojima et al., 2022). 

Analysis of Seq2Sq-DDP Approach
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Second approach: Seq2Seq-DDP + Transition

• Related to the deterministic dependency parsing 
algorithm [Nivre, 2003, 2008]

• Buffer: stores all EDUs

• States:  keeps track of EDU_i being processed

• Cs: initial state

• Ct: set of final states

• Actions: given a state, it defines which link(s) and 
relation(s) to assign to EDU_i.

• à Focus on one EDU (utterance) at a time.

• à Prediction is incremental and takes into 
account the previous states.
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Second approach: Seq2Seq-DDP + Transition
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Second approach: Seq2Seq-DDP + Transition
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Second approach: Seq2Seq-DDP + Transition
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Second approach: Seq2Seq-DDP + Transition
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Second approach: Seq2Seq-DDP + Transition
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Second approach: Seq2Seq-DDP + Transition
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Second approach: Seq2Seq-DDP + Transition
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• Y(natural) is a sequence of elements with a structure: 

• Y(focused) is a sequence of elements with structure: 

• Sliding window strategy to cope with increasing input length: 
• The closest EDUs are the most relevant to the target EDU

• Last step: from Y(natural) and Y(focused) to the target discourse 
graph is easy! No worry of mismatched EDUs or counting issue.

Second approach: Seq2Seq-DDP + Transition
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Evaluation: Datasets

• Test on two dialogue datasets
• STAC (The Settlers of Catan game): 1,000 gaming 

conversations, ~10k discourse units
• Molweni (Ubuntu Chat logs): 10,000 short log 

conversations, ~80k discourse units

• Metric: micro-F1 score
• T0-3B checkpoint as backbone model

STAC

Molwnei
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Evaluation: Simple Seq2Seq-DDP

Overall, fine-tuned T0-3B model can perform well on discourse parsing

• On Molweni, Y(natural) and Y(augmented) both perform well
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Evaluation: Simple Seq2Seq-DDP

Overall, fine-tuned T0-3B model can perform well on discourse parsing

• On STAC, more pronounced difference between Y(natural) and Y(augmented)
• STAC contains shorter EDUs, similar ones occur
• Y(natural) omits the text and only use EDU markers à cause ambiguity
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Evaluation: Simple Seq2Seq-DDP

Problems

• Hallucinated EDUs

• Missed EDUs

• Incorrect counting
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Evaluation: Simple Seq2Seq-DDP

Problems

• Hallucinated EDUs

• Missed EDUs

• Incorrect counting
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Evaluation: Seq2Seq-DDP+Transition

Comparison
• Ours: Seq2Seq-DDP+Transition largely outperforms its 

counterpart, with superior performance on longer documents

X axis: #EDUs in a doc. Y axis: F1 score 
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Evaluation: Seq2Seq-DDP+Transition

Comparison

• SOTA models: comparable results with our Seq2Seq+Transition models
• Ours do not need specific parsing modules or modification of LLM architecture
• Ours can predict richer graph-like structures thanks to flexible Y scheme
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Further Investigation: Label Semantics & Abridged Output

• On STAC: 
Link prediction -2%
Link+Relation prediction -9%

• On Molweni:
No significant performance drop 

• Y (natural): 

• Y(masked): 

• Y (natural): 

• Y(abridged): 
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Further Investigation: Label Semantics & Abridged Output

• On STAC: 
Link prediction -2%
Link+Relation prediction -9%

• On Molweni:
No significant performance drop 

à Label Semantics  and natural language–like 
scheme brings more accurate predictions, 
especially when training data is of low 
volume

à Sufficient Supervision enables us to use the 
simpler format

• Y (natural): 

• Y(masked): 

• Y (natural): 

• Y(abridged): 

• STAC 900 train docs vs. Molweni 
9,000 train docs



• Models: T5, Flan-T5, T0

• Sizes: 250M, 780M, 3B 
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Further Investigation: Pretrained LLMs

• Flan-T5 and T0 comparable results
• Both largely exceed T5 (up to 2-digit 

gains)

à Instruction tuning enhances model’s 
ability in learning complex reasoning task.



Summary and Perspectives

Our Research Goal:

Leverage LLMs for discourse structure 
prediction without explicitly designing parsing 
modules or changing the architecture of LLMs.

This Study:

Turn parsing task into a seq2seq generation 
task;

Propose two seq2seq-DDP approaches with 
sophisticated output schemes
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Future Directions:

Extend our method to other discourse parsing 
tasks: e.g., RST, PDTB, which may require 
alternative sequence representations.

• RST-style parsing with Llama2 [Maekawa et al., 
2024], EACL

Explore generative open-source model 
architectures.
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Thank you!

Chuyuan Li, Yuwei Yin, Giuseppe Carenini

University of British Columbia

SIGdial 2024, September 7, 

Kyoto University

Dialogue Discourse Parsing as Generation: 
a Seq-to-Seq LLM-based Approach
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The age of Large Generative Models

Bad results in directly prompting T0 on discourse parsing.

Similarly, GPT-3.5 on dialogue discourse parsing [Chan et 
al., 2023]
• Zero-shot and few-show In-context learning
• With and without label description
• Only to find abysmal results
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Existing work on dialogue discourse parsing

Various decoding strategy
• Maximum spanning tree decoders [Muller et al., 2012]
• Integer linear programming [Perret et al., 2016]

Neural models
• Deep sequential + classification [Shi and Huang, 2019]
• Pre-trained language model (PLM) + classification [Liu and Chen, 2021]
• Graph neural network [Wang et al., 2021]
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However, …
• Heavy feature engineering, specialized decoding strategies
• Mostly limited to trees
• No use of latent knowledge in recent Large Generative 

Models



First system: Seq2Seq-DDP
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