

Discourse Relation Prediction and Discourse Parsing in Dialogues with Minimal Supervision

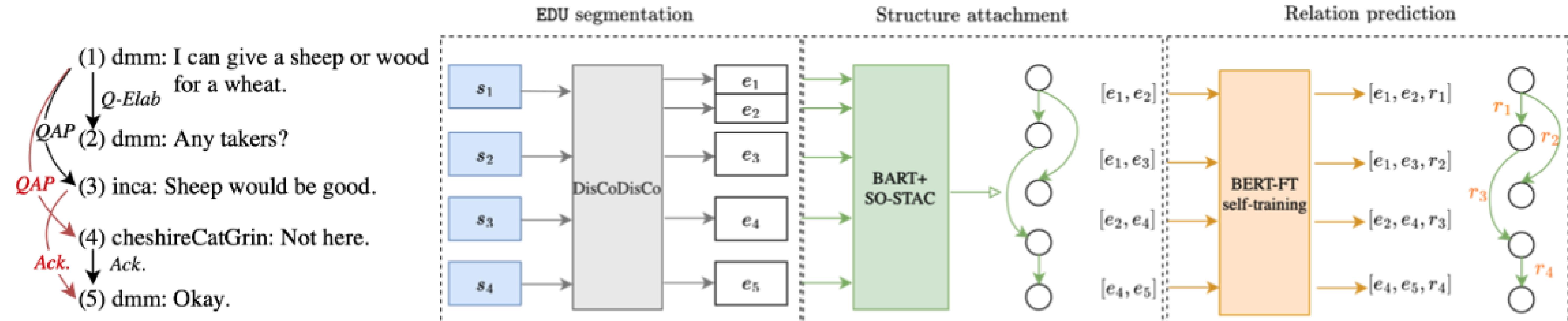
Chuyuan Li¹, Chloé Braud², Maxime Amblard³, Giuseppe Carenini¹

¹{cli2711, carenini}@cs.ubc.ca, ²chloe.braud@irit.fr, ³maxime.amblard@loria.fr

Context & Motivation

- Explosion of online **dialogue data** brings increasing need for automatic dialogue analysis systems
- Simple surface-level features are not sufficient, we need semantic & pragmatic information, for instance **discourse analysis**
- However, discourse analysis faces **data scarcity**, e.g., SDRT-framework [2] annotated STAC corpus [1] $\approx 10k$ elementary discourse units (EDUs)
- **Semi-supervised** approaches: leverage information from PLMs for structure extraction [5]; self-training techniques on monologues [6]
- Focus: discourse relation prediction in dialogues + integration into a full pipeline: EDU segmentation \rightarrow structure attachment \rightarrow relation prediction

Pipeline Design



Left: a dialogue example. Nodes are EDUs; edges are relations. Right: *structure-then-relation* pipeline. s are speech turns; e are EDUs; r are relations.

1. **EDU segmentation:** Off-the-shelf segmenter DisCoDisCo [4], achieves an F_1 score of 94.8%.

2. **Structure attachment with fine-tuned BART** [5]

- Sentence-Ordering (SO) pre-training task to enhance pair-wise, inter-speech turns, and inter-speaker discourse information in BART
- Attention matrices are regarded as fully connected graphs, Maximum Spanning Tree algorithm is used to extract dependency structures
- Examine each attention matrix individually in BART encoder, use a small set of annotated dialogues to locate the best attention matrices

3. **Relation prediction with BERT and self-training**

- Classifier \mathcal{M} : fine-tuned BERT, input follows Next Sentence Prediction pattern: [CLS] EDU₁ [SEP] EDU₂
- Sample selection criteria: (a) top- k : top k pseudo-labeled data (b) top-class- k : most confident pseudo-labeled data in each class and together results in k examples so that the label ratio is maintained; $k \in [800, 1800, \dots 7800]$
- Iterative training: \mathcal{M} is trained iteratively with the combination of 700 pairs of gold annotated data and k augmented pseudo-labeled data

Relation Prediction Results (left) & Full Parsing in-domain and cross-domain Results (right)

Majority class		27.1
BERT (base 700)		40.1 _{0.8}
BERT-ft (base 700)		56.6 _{1.0}
Self-training	Top- k	Top-class- k
#Pair	loop1	loop1 loop2 loop3
+ 800	54.1 _{3.0}	57.7 _{1.1} 55.9 _{1.1} 58.1_{1.2}
+ 1800	53.6 _{3.6}	57.3 _{1.6} 58.4_{1.0} 57.4 _{2.1}
+ 2800	55.7 _{1.9}	57.6 _{0.3} 57.5 _{1.5} 58.1_{2.2}
+ 3800	56.6 _{2.1}	57.6_{1.6} - -
+ 4800	56.8 _{0.5}	57.8_{1.2} - -
+ 5800	58.1_{0.8}	58.0_{0.7} - -
+ 6800	57.8 _{1.0}	57.9 _{0.9} - -
+ 7800	57.8 _{0.7}	57.0 _{2.3} - -

- top-class- k (vs. top- k) selection consistently brings improvement; iterative training helps especially for *infrequent* relation types

Train / Test	Train #Doc	STAC/STAC				STAC/Molweni-clean		
		EDU	Link	Rel	Full	Link	Rel	Full
Structured joint [3]	947	-	70.7 _{0.5}	77.3 _{1.2}	54.6 _{0.7}	61.5 _{3.4}	59.5 _{4.3}	36.6 _{3.8}
Structured joint	50	-	55.1 _{3.5}	61.1 _{2.1}	33.6 _{2.2}	51.1 _{6.4}	33.6 _{9.5}	17.2 _{5.3}
Arc-factored	50	-	42.7 _{2.8}	56.4 _{2.5}	24.0 _{1.0}	53.7 _{2.1}	38.8 _{2.9}	20.9 _{1.1}
GPT3.5few shot	3	-	20.7	24.1	7.3	-	-	-
GPT3.5zero shot	-	-	20.0	22.8	4.4	-	-	-
Ours (gold EDU)	50	-	59.3_{0.7}	62.0_{1.1}	38.6_{0.7}	75.6_{0.7}	41.3_{3.8}	31.2_{2.9}
Ours (pred EDU)	50	94.8	52.2 _{0.4}	61.2 _{1.6}	32.8 _{0.9}	~	~	~

- In-domain (board game): our pipeline largely outperforms SOTA supervised parser SJ in link attachment (+4%), relation prediction (+1%), and full parsing (+5%)
- Cross-domain (board game \rightarrow Ubuntu chat): superior performance compared to SJ: link (+24%), relation (+8%), and full parsing (+14%)

Conclusion

- Versatile pipeline for sequentially addressing all tasks in discourse parsing
- Strong performance in both in-domain and cross-domain settings
- **Future work:** improve relation prediction by using more out-of-domain raw data in self-training; evaluate the pipeline on spoken dialogue data and test on other discourse frameworks

References

- [1] N. Asher and et al. the STAC corpus. In *LREC*, 2016.
- [2] N. Asher and A. Lascarides. *Logics of conversation*. Cambridge University Press, 2003.
- [3] T. Chi and A. Rudnicky. Structured dialogue discourse parsing. In *SIGDial*, 2022.
- [4] L. Gessler and et al. Discodisco at the disrup2021 shared task. In *DISRPT*, 2021.
- [5] C. Li and et al. Discourse structure extraction from pre-trained and fine-tuned language models in dialogues. In *EACL Findings*, 2023.
- [6] N. Nishida and Y. Matsumoto. Out-of-domain discourse dependency parsing via bootstrapping. In *TACL*, 2022.