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Context & Motivation

Explosion of online dialogue data brings increasing need for automatic dialogue analysis systems

Simple surface-level features are not sufficient, we need semantic & pragmatic information, for instance discourse analysis
However, discourse analysis faces data scarcity, e.g., SDRT-framework [2] annotated STAC corpus |[1| ~ 10k elementary discourse units (EDUs)

Semi-supervised approaches: leverage information from PLMs for structure extraction [5]; self-training techniques on monologues (6]

integration into a full pipeline: EDU segmentation — structure attachment — relation prediction

Focus: discourse relation prediction in dialogues

Pipeline Design

Relation prediction
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Lett: a dialogue example. Nodes are EDUs; edges are relations. Right: structure-then-relation pipeline. s are speech turns; e are EDUs; r are relations.

Off-the-shelf segmenter DisCoDisCo [4], achieves an F; score of 94.8%.

2. Structure attachment with fine-tuned BART [5]
o Sentence-Ordering (SO) pre-training task to enhance pair-wise, inter-speech turns, and inter-speaker discourse information in BART

1. EDU segmentation:

o Attention matrices are regarded as fully connected graphs, Maximum Spanning Tree algorithm is used to extract dependency structures

o Examine each attention matrix individually in BART encoder, use a small set of annotated dialogues to locate the best attention matrices
3. Relation prediction with BERT and self-training

o Classifier M: fine-tuned BERT, input follows Next Sentence Prediction pattern: |[CLS| EDU; |[SEP| EDU,

o Sample selection criteria: (a) top-k: top k pseudo-labeled data (b) top-class-k: most confident pseudo-labeled data in each class and together
results in k examples so that the label ratio is maintained; k& € [800, 1800, ...7800]

e Iterative training: M is trained iteratively with the combination of 700 pairs of gold annotated data and k& augmented pseudo-labeled data

Relation Prediction Results (left) & Full Parsing in-domain and cross-domain Results (right)
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_ 0.7 23 _ _ link attachment (44%), relation prediction (+1%), and full parsing (+5%)
o top-class-k (ws. top-k) selection consistently

o Cross-domain (board game — Ubuntu chat): superior performance compared to SJ: link
(+24%), relation (+8%), and full parsing (+14%)

brings improvement; iterative training helps es-
pecially for infrequent relation types
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Conclusion
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