

Loria

inria

UNIVERSITÉ
DE LORRAINE

Discourse Structure Extraction from Pre-Trained and Fine-Tuned Language Models in Dialogues

Findings of EACL 2023

Chuyuan Li, Patrick Huber, Wen Xiao, Maxime Amblard, Chloé Braud, Giuseppe Carenini

Dialogues

CONTEXT & MOTIVATION

- Explosion of dialogue data
 - Form: In person, calls, texts (online forums)
 - Objective: chit-chats, task-specific (e.g.: restaurant reservation)
- Simple surface-level features not sufficient ([Qin et al., 2017](#))
→ Need semantic & pragmatic relations, for instance **discourse analysis**

Fig: Dialog forms, from Internet

Dialogues

CONTEXT & MOTIVATION

- Explosion of dialogue data
 - Form: In person, calls, texts (online forums)
 - Objective: chit-chats, task-specific (e.g.: restaurant reservation)
- Simple surface-level features not sufficient ([Qin et al., 2017](#))
 - Need semantic & pragmatic relations, for instance **discourse analysis**
- Issue: data sparsity
 - RST-DT (Wall Street Journal): 21.8k discourse units
 - STAC (The Settlers of Catan board game, [Asher et al., 2016](#)): ~10k discourse units

Fig: Dialog forms, from Internet

Discourse Structure in Dialogues

SEGMENTED DISCOURSE REPRESENTATION THEORY

- SDRT Framework ([Asher et al., 2003](#))

- Presented as **graph**, with nodes represent discourse units (DU) and edges rhetorical relations

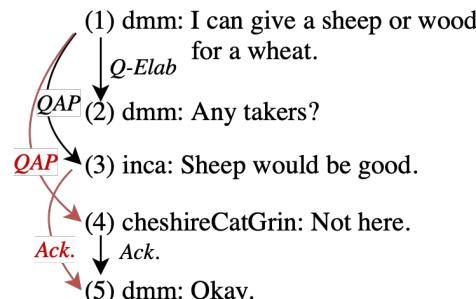


Fig: Excerpt s2-leagueM-game4, STAC.

Dialogue Specificities

- Generally less structured, informal linguistic usage ([Sacks et al., 1978](#))
- Structural particularities, e.g., *lozenge-shape*

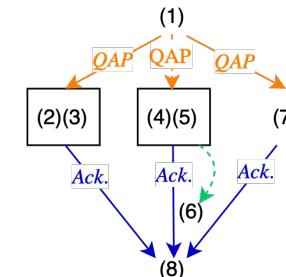


Fig: Lozenge-shaped discourse structure, STAC.

Discourse Structure in PLMs

EMPIRICAL INSPIRATION

- BERTology Research
 - Discourse probing/structure extraction tasks in Pre-Trained Language Models (PLMs):
[Koto et al., 2021](#), [Pandia et al., 2021](#), [Huber&Carenini 2022](#)

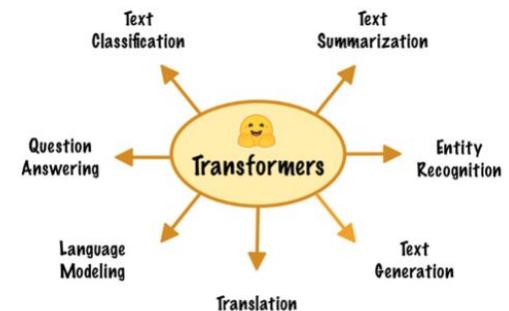


Fig: Top: illustration of dependency structure in SDRT;
Bottom: Transformer-based model and tasks

Discourse Structure in PLMs

EMPIRICAL INSPIRATION

- BERTology Research
 - Discourse probing/structure extraction tasks in Pre-Trained Language Models (PLMs):
[Koto et al., 2021](#), [Pandia et al., 2021](#), [Huber&Carenini 2022](#)
 - Structure extraction from attention matrices: [Liu&Lapata2018](#)

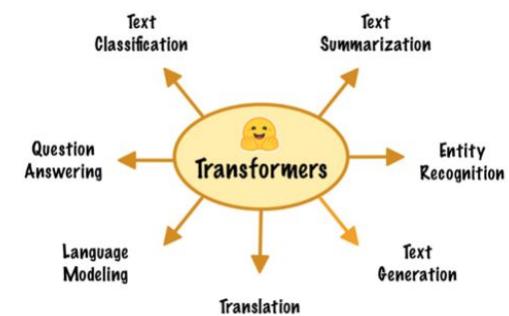
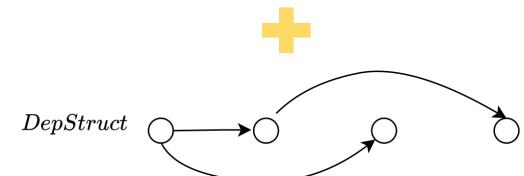


Fig: Top: illustration of dependency structure in SDRT;
Bottom: Transformer-based model and tasks

⇒ Our Task: extract discourse structure in dialogues from PLMs



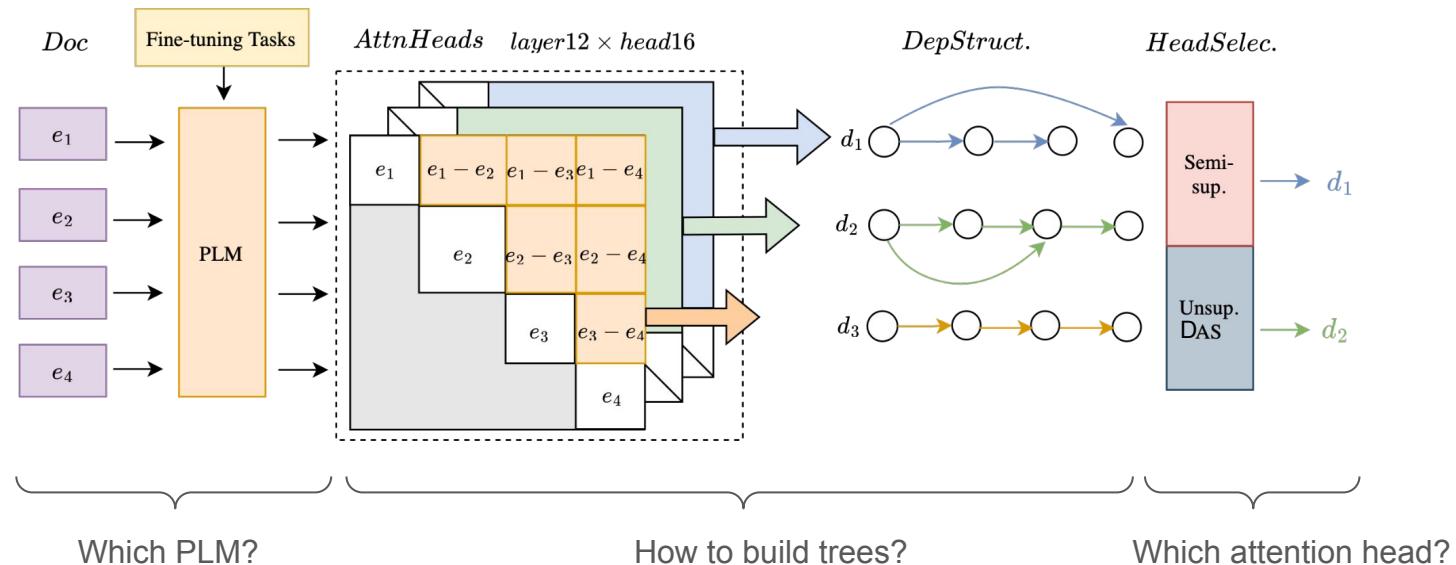
Discourse Structure as DAG in Dialogues

TASK FORMULATION

- Dialogue with n elementary discourse units (EDUs) $D=\{e_1, e_2, \dots, e_n\}$
- Extract a Directed Acyclic Graph (DAG) connecting the n EDUs that best represent SDRT structure
- Simplifications
 - Complex discourse units (CDUs) → EDUs
 - DAG → Dependency Trees, as in [Muller2012](#), [Li2014](#), [Afantenos2012](#), [Shi2019](#), [Wang2021](#) (note that [Perret2016](#) predict DAGs)

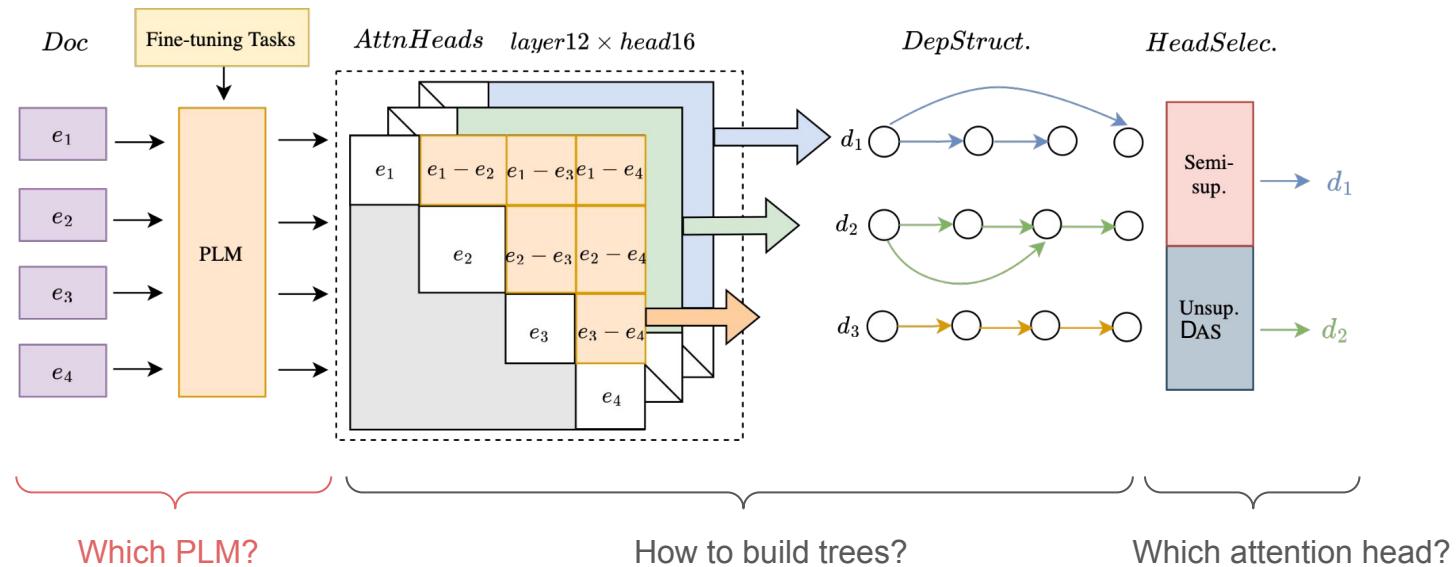
Discourse Structure in Dialogues from PLMs

PIPELINE



Discourse Structure in Dialogues from PLMs

PIPELINE



Discourse Structure in Dialogues from PLMs

METHODS (1) – WHICH KINDS OF PLMS TO USE?

- Pre-Trained Models
 - BART ([Lewis et al., 2019](#)): encoder-decoder
 - Others: DialoGPT ([Zhang et al., 2020](#)), DialogLM ([Zhong et al., 2022](#))

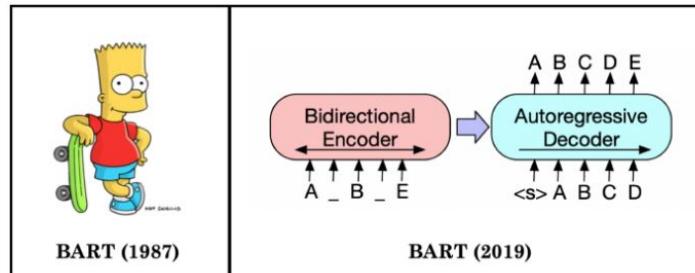


Fig: BART from The Simpsons; BART model. [Source](#).

Discourse Structure in Dialogues from PLMs

METHODS (1) – WHICH KINDS OF PLMS TO USE?

- Fine-Tuning Tasks & Corpora
 - Summarization: CNN-Dailymail, SAMSum
 - Question-Answering: SQuAD2
 - **Sentence Ordering (SO):** STAC, DailyDialog

Discourse Structure in Dialogues from PLMs

METHODS (1) – WHICH KINDS OF PLMS TO USE?

- Fine-Tuning Tasks & Corpora
 - Summarization: CNN-Dailymail, SAMSum
 - Question-Answering: SQuAD2
 - **Sentence Ordering (SO):** STAC, DailyDialog
 - [Barzilay&Lapata 2008](#), [Chowdhury et al., 2021](#)
 - Mixed shuffling strategies: pair-wise, inter-block, inter-speaker shuffling

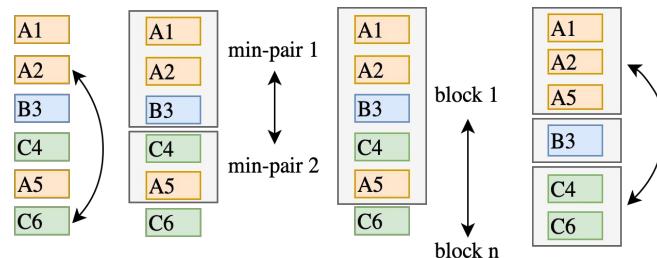
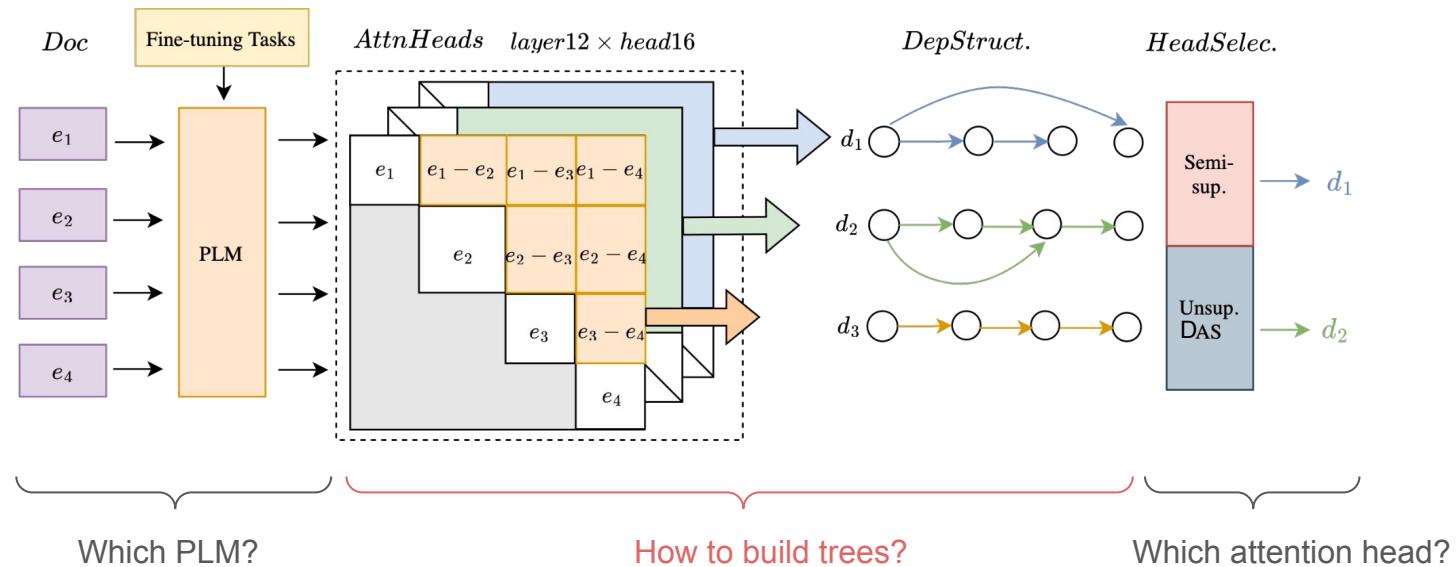


Fig: partial, minimal-pair, block, speaker-turn shuffling strategies.

Discourse Structure in Dialogues from PLMs

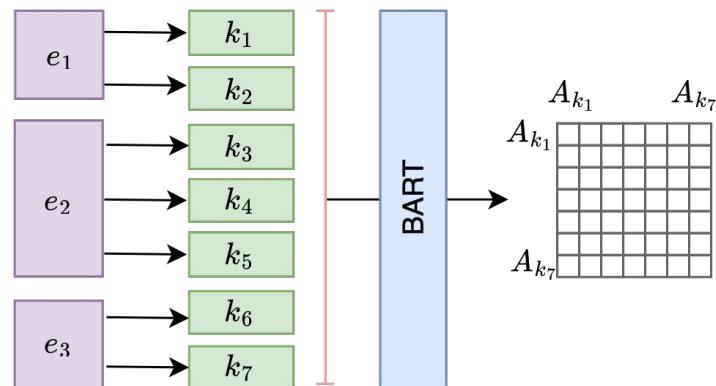
PIPELINE



Discourse Structure in Dialogues from PLMs

METHODS (2) – HOW TO DERIVE TREES FROM ATTENTION HEADS?

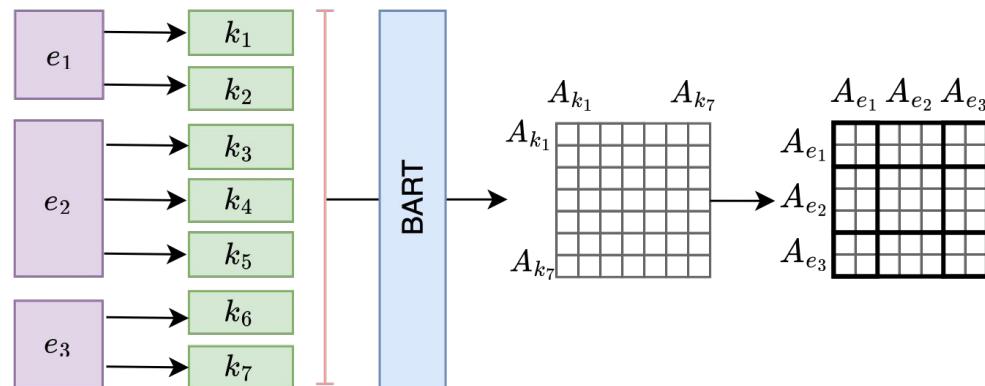
- From each attention matrix



Discourse Structure in Dialogues from PLMs

METHODS (2) – HOW TO DERIVE TREES FROM ATTENTION HEADS?

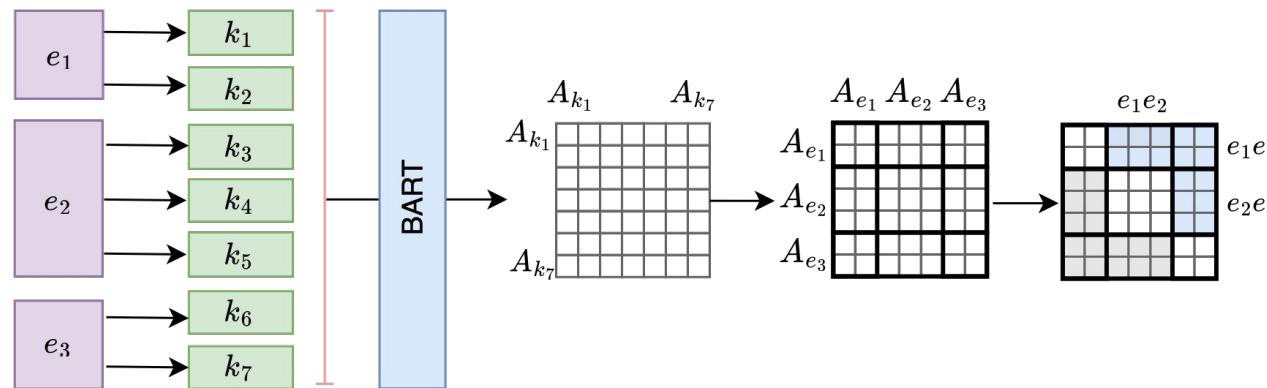
- From each attention matrix



Discourse Structure in Dialogues from PLMs

METHODS (2) – HOW TO DERIVE TREES FROM ATTENTION HEADS?

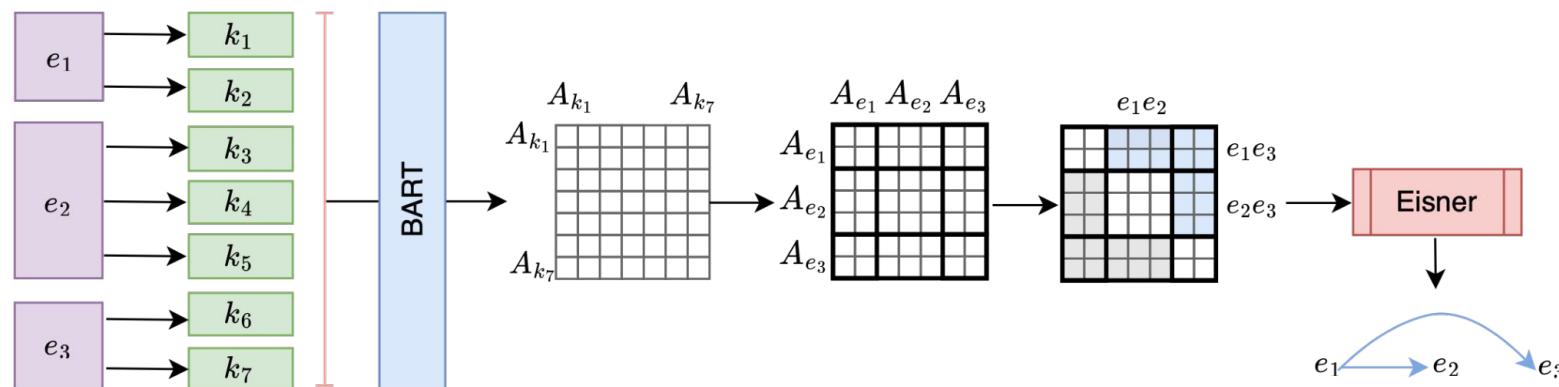
- From each attention matrix



Discourse Structure in Dialogues from PLMs

METHODS (2) – HOW TO DERIVE TREES FROM ATTENTION HEADS?

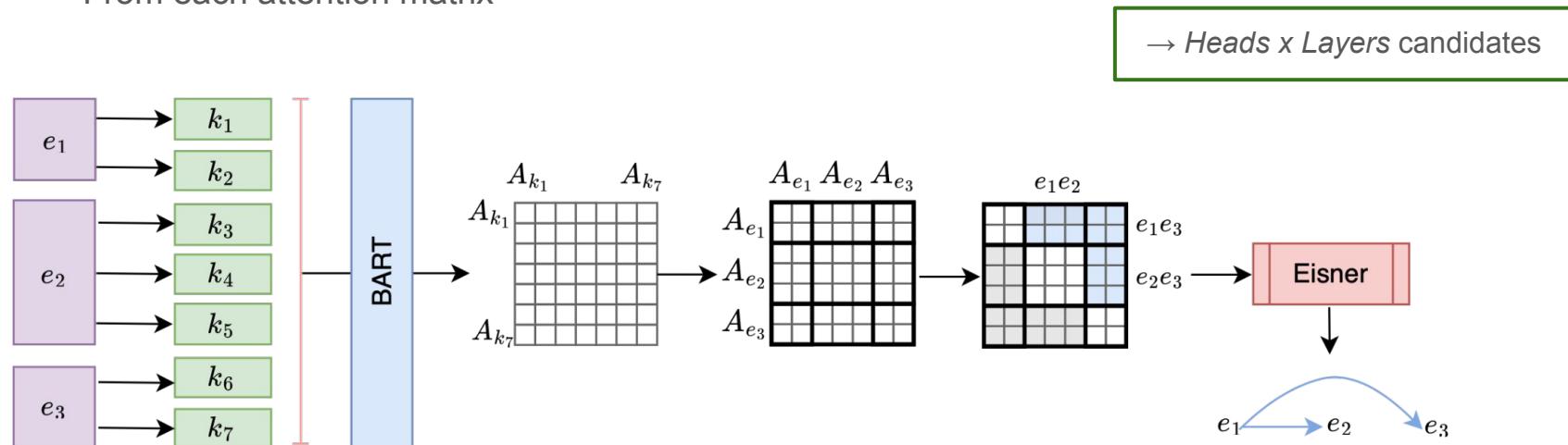
- From each attention matrix



Discourse Structure in Dialogues from PLMs

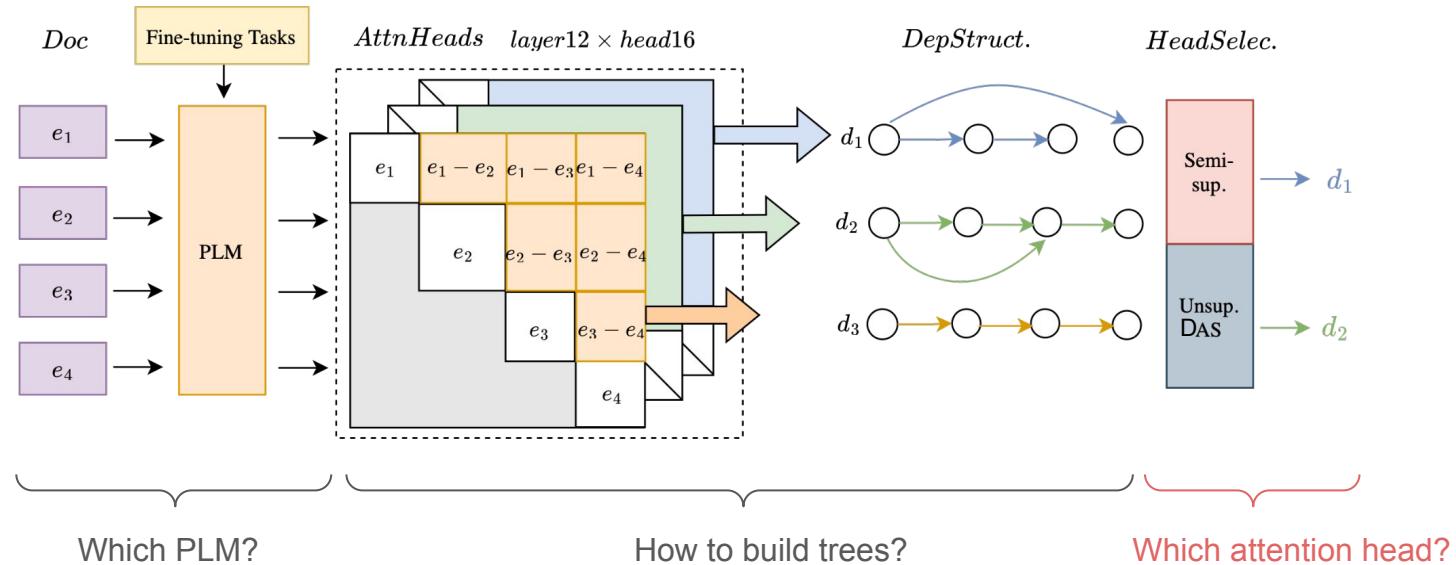
METHODS (2) – HOW TO DERIVE TREES FROM ATTENTION HEADS?

- From each attention matrix



Discourse Structure in Dialogues from PLMs

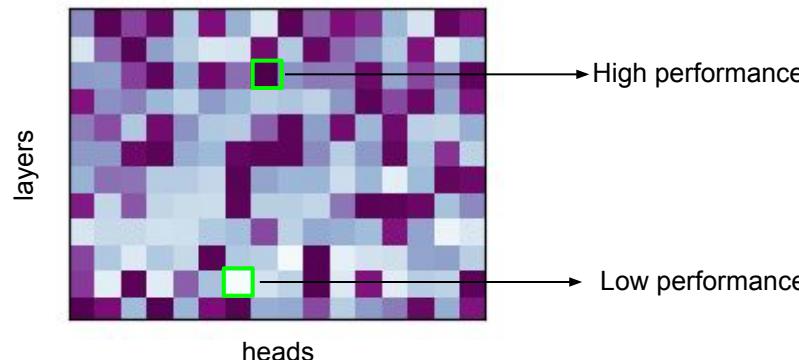
PIPELINE



Discourse Structure in Dialogues from PLMs

METHODS (3) – HOW TO FIND THE BEST HEADS?

- Discourse extraction method operates on single self-attention matrices
 - BART: 192 candidate matrices (16 heads x 12 layers)
- Question: which heads / layers contain most discourse information?



Discourse Structure in Dialogues from PLMs

METHODS (3) – HOW TO FIND THE BEST HEADS?

- Unsupervised Selection
 - *Dependency Attention Support (DAS)* score

$$DAS(T^g) = \frac{1}{n-1} \sum_{i=1}^n \sum_{j=1}^n Sel(A^g, i, j) \quad (1)$$

with $Sel(A^g, i, j) = A_{ij}^g$, if $l_{ij} \in T^g$, 0 otherwise.

Where T^g is Eisner extracted Tree for dialog g .

Discourse Structure in Dialogues from PLMs

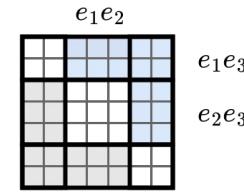
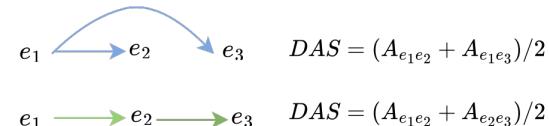
METHODS (3) – HOW TO FIND THE BEST HEADS?

- Unsupervised Selection
 - *Dependency Attention Support (DAS)* score

$$DAS(T^g) = \frac{1}{n-1} \sum_{i=1}^n \sum_{j=1}^n Sel(A^g, i, j) \quad (1)$$

with $Sel(A^g, i, j) = A_{ij}^g$, if $l_{ij} \in T^g$, 0 otherwise.

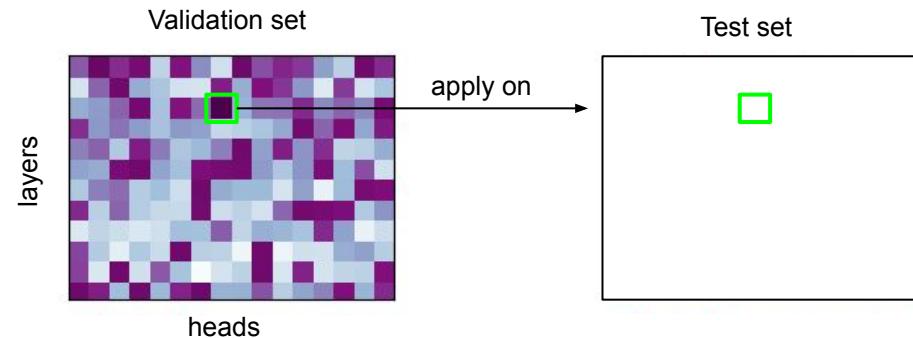
Where T^g is Eisner extracted Tree for dialog g .



Discourse Structure in Dialogues from PLMs

METHODS (3) – HOW TO FIND THE BEST HEADS?

- Semi-supervised Selection
 - Use annotated subset of {10, 30, 50} examples in validation set
 - Obtain best performing head, apply on test set
 - Execute 10 runs for each subset



Discourse Structure in Dialogues from PLMs

EXPERIMENTAL SETTINGS

- Datasets: STAC (Settlers of Catan board game)
- PLM: BART
- Baselines & Supervised Discourse Parsers
 - *LAST* – unsupervised baseline
 - Deep Sequential ([Shi2019](#)), Graph Neural Network ([Wang2021](#)) – gap with supervised parsers
- Evaluation Metrics
 - Micro-F1
 - Unlabeled attachment score (UAS)

Discourse Structure in Dialogues from PLMs

RESULTS (1) – UNSUPERVISED DAS

- LAST: unsupervised baseline
- H_g: global head
- H_l: local head
- H_ora: oracle head

- BART underperform LAST
- FT on summarization (+CNN, +SAMSum) and QA (+SQuAd2): marginal improvements
- FT on SO (+SO-DD, +SO-STAC) surpass LAST, but less than oracle head

Model			
<i>Unsupervised Baseline</i>			
LAST			56.8
<i>Supervised Models</i>			
Deep-Sequential (2019)			71.4
SSA-GNN (2021)			73.8
<i>Unsupervised PLMs</i>			
BART	H _g	H _l	H _{ora}
	56.6	56.4	57.6
+ CNN	56.8	56.7	57.1
+ SAMSum	56.7	56.6	57.6
+ SQuAd2	55.9	56.4	57.7
+ SO-DD	56.8	57.1	58.2
+ SO-STAC	56.7	57.2	59.5

Discourse Structure in Dialogues from PLMs

RESULTS (2) – SEMI-SUPERVISED METHOD

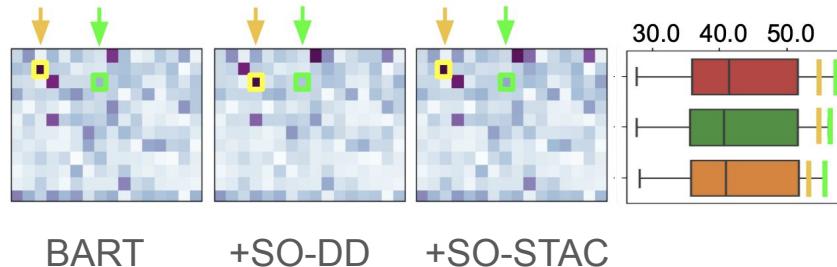
- Use a few (10/30/50) annotated examples in validation set to help find the best attention head
 - All 3 models > LAST
 - With 50 examples, F1 improve from 56.8 → 59.3, achieve almost oracle performance (59.5)
 - Improvement is consistent across different models and validation sizes, with smaller std-dev.

Train on →	BART	+ SO-DD	+ SO-STAC
Test with ↓	F ₁	F ₁	F ₁
LAST BSL	56.8	56.8	56.8
Gold H	57.6	58.2	59.5
Unsup H _g	<u>56.6</u>	56.8	56.7
Unsup H _l	56.4	<u>57.1</u>	<u>57.2</u>
Semi-sup 10	57.0 _{0.012}	57.2 _{0.012}	57.1 _{0.026}
Semi-sup 30	57.3 _{0.005}	57.3 _{0.013}	59.2 _{0.009}
Semi-sup 50	57.4_{0.004}	57.7_{0.005}	59.3_{0.007}

Discourse Structure in Dialogues from PLMs

ANALYSIS (1) – EFFECTIVENESS OF DAS

- DAS score matrices
 - Yellow : DAS selected heads
 - Green : Oracle heads



Heatmap: top to bottom: layer 12 to 1, left to right: head 1 to 16.

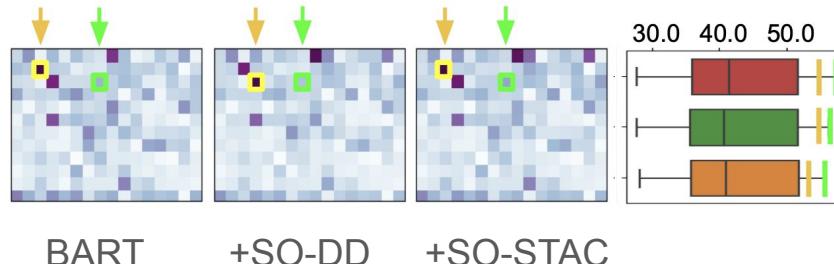
Boxplot: head-aggregated UAS scores. Red: BART model; green: BART+SO-DD; orange: BART+SO-STAC.

Discourse Structure in Dialogues from PLMs

ANALYSIS (1) – EFFECTIVENESS OF DAS

- DAS score matrices

- Yellow : DAS selected heads
- Green : Oracle heads



Heatmap: top to bottom: layer 12 to 1, left to right: head 1 to 16.

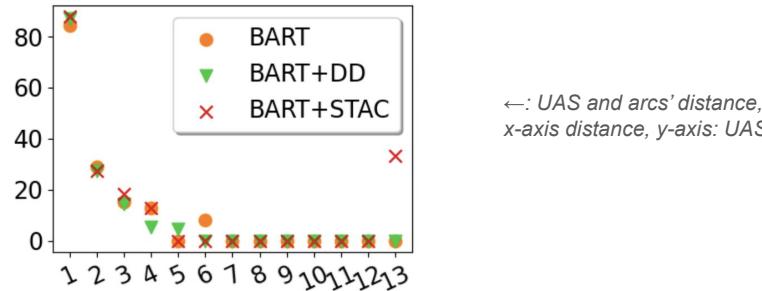
Boxplot: head-aggregated UAS scores. Red: BART model; green: BART+SO-DD; orange: BART+SO-STAC.

- Discourse information consistently located in deeper layers
- Oracle heads situated in the same attention matrices for 3 models
- DAS \neq Oracle, but among top 10% best heads, reasonable approximation

Discourse Structure in Dialogues from PLMs

ANALYSIS (2) – DOCUMENT & ARC LENGTHS

- Test if our approach can predict distant edges (compared to LAST with 0 distant edge)



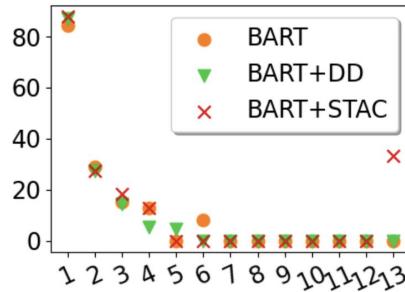
Arc Distance

- Direct arcs: high UAS score (>80%)
- Dist ≥ 2 , performance drops
- Dist > 6 , almost all fail

Discourse Structure in Dialogues from PLMs

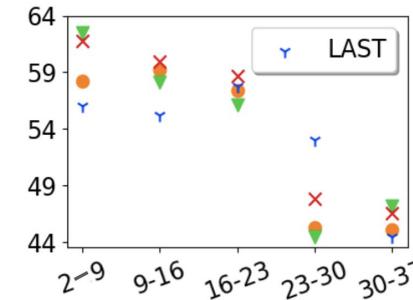
ANALYSIS (2) – DOCUMENT & ARC LENGTHS

- Test if our approach can predict distant edges (compared to LAST with 0 distant edge)



←: UAS and arcs' distance,
x-axis: distance, y-axis: UAS

→: averaged UAS for different length
of document,
x-axis: document length, y-axis: UAS.



Arc Distance

- Direct arcs: high UAS score (>80%)
- Dist ≥ 2 , performance drops
- Dist > 6 , almost all fail

Document Length

- 5 even intervals [2, 37]
- $|\text{doc}| < 23$ EDUs, all models better than LAST
- $[23, 30]$ worse than bsl, over-predict distant arcs

Discourse Structure in Dialogues from PLMs

ANALYSIS (3) – EXAMINATION ON PROJECTIVE TREES

- Proportion of trees vs. graphs in STAC
 - Simplified assumptions
 - Direct and fair comparison

	#Doc	#EDUs		#Arcs	
		Single-in	Multi-in	Proj.	N-proj.
(1) Non-Tree	48	706	79	575	170
(2) Tree	61	444	0	348	35
- Proj. tree	48	314	0	266	0

Table: Trees and non-tree statistics in STAC.

Discourse Structure in Dialogues from PLMs

ANALYSIS (3) – EXAMINATION ON PROJECTIVE TREES

- Proportion of trees vs. graphs in STAC
 - Simplified assumptions
 - Direct and fair comparison
- Unsupervised and Semi-supervised Experiments
 - Results are improved: F1 from 59% → **68%**
 - Tree Properties ([Ferracane et al., 2019](#))
 - Avg. branch, height, % of leaf, normalized arc, “vacuous” trees (details in appendix)
 - → Well aligned with gold trees
 - → “Thinner” and “taller”

	#Doc	#EDUs		#Arcs	
		Single-in	Multi-in	Proj.	N-proj.
(1) Non-Tree	48	706	79	575	170
(2) Tree	61	444	0	348	35
- Proj. tree	48	314	0	266	0

Table: Trees and non-tree statistics in STAC.

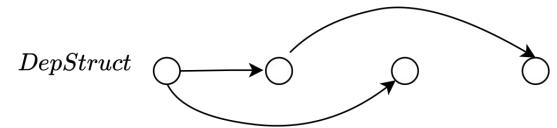
Train on →	BART	+ SO-DD	+ SO-STAC
Test with ↓	F ₁	F ₁	F ₁
LAST BSL	62.0	62.0	62.0
Gold H	64.8	67.4	68.6
Unsup H _g	<u>62.5</u>	62.5	62.1
Unsup H _l	62.1	<u>62.9</u>	<u>63.3</u>
Semi-sup 10	54.6 _{0.058}	59.2 _{0.047}	61.6 _{0.056}
Semi-sup 30	60.3 _{0.047}	60.3 _{0.044}	65.6 _{0.043}
Semi-sup 50	64.8_{0.000}	66.3_{0.023}	68.1_{0.014}

Table: Micro-F1 on STAC projective tree subset.

Discourse Structure in Dialogues from PLMs

CONCLUSION & FUTURE WORK

- Detection the presence of discourse information in PLMs
- Design of sentence-ordering fine-tuned task tailored for dialogue structures
- Extraction of naked discourse structure with unsupervised and semi-supervised strategies



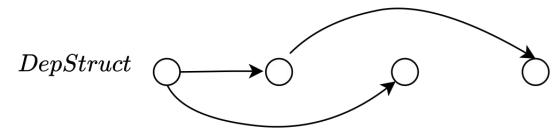
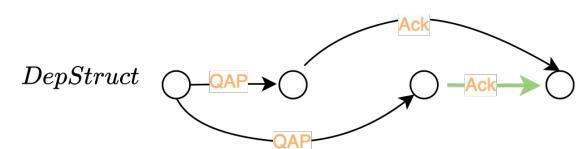
Discourse Structure in Dialogues from PLMs

CONCLUSION & FUTURE WORK

- Detection the presence of discourse information in PLMs
- Design of sentence-ordering fine-tuned task tailored for dialogue structures
- Extraction of naked discourse structure with unsupervised and semi-supervised strategies

Future work

- Explore **graph-like** structures by extending treelike structures
- Perform full discourse parsing by adding **relation prediction**



Discourse Structure Extraction from Pre-Trained and Fine-Tuned Language Models in Dialogues

Thank you!

Appendices

Properties of 48 projective dependency trees GT vs. extracted trees from PLMs

	Avg.branch	Avg.height	%leaf	Norm. arc
GT	1.67	3.96	0.46	0.43
BART	1.20	5.31	0.31	0.34
+SO-DD	1.32 _{0.014}	5.31 _{0.146}	0.32 _{0.019}	0.37 _{0.003}
+SO-STAC	1.27 _{0.076}	5.28 _{0.052}	0.32 _{0.011}	0.35 _{0.015}

Table 6: Statistics for ground truth projective trees and extracted trees from oracle attention heads in BART and fine-tuned BART models.

Illustration of “vacuous” trees (Ferracane 2018)

Qualitative investigation of well predicted example

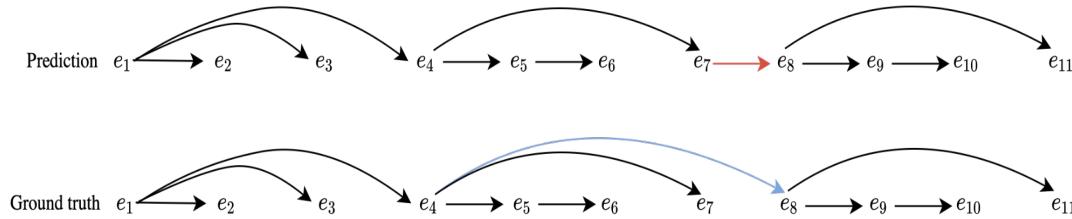


Fig: Well predicted: pilot02-4, STAC. UAS: 90%. In red: false positive; in blue: false negative.

Qualitative investigation of badly predicted examples

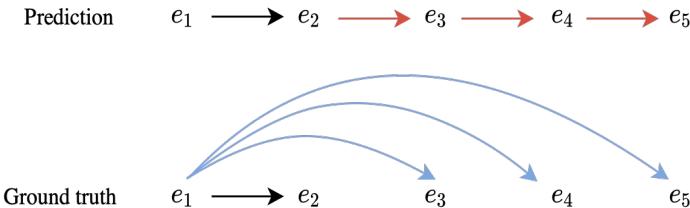


Fig: Badly predicted: s1-league3-game3, STAC. UAS: 25%. Failed in predicting distant edges.

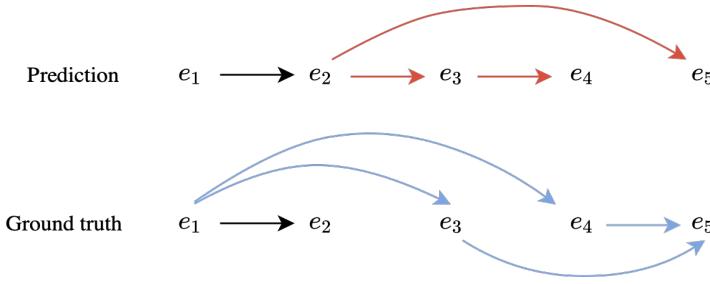


Fig: Badly predicted: s2-leagueM-game4, STAC. UAS: 20%. Failed in predicting “lozenge” shape.

Results with other PLMs

Model	H _{ora}	Unsup		Semi-sup		
		H _g	H _l	Semi10	Semi30	Semi50
BART	57.6	56.6	56.4	57.0 _{0.012}	57.3 _{0.005}	57.4 _{0.004}
+ SO-DD	58.2	56.8	57.1	57.2 _{0.012}	57.3 _{0.013}	57.7 _{0.005}
+ SO-STAC	59.5	56.7	57.2	57.1 _{0.026}	59.2 _{0.009}	59.3_{0.007}
RoBERTa	57.4	56.8	56.8	55.6 _{0.013}	56.8 _{0.002}	<u>56.9_{0.003}</u>
DialoGPT	56.2	42.7	36.2	52.9 _{0.043}	55.1 _{0.017}	<u>56.2_{0.000}</u>
DialogLED	57.2	56.8	56.7	54.6 _{0.026}	54.7 _{0.061}	<u>56.6_{0.019}</u>
+ SO-DD	57.7	56.4	56.6	55.0 _{0.028}	56.1 _{0.024}	<u>57.3_{0.009}</u>
+ SO-STAC	58.4	56.8	57.1	57.7 _{0.001}	<u>58.2_{0.005}</u>	57.7 _{0.001}

Table 10: Micro-F₁ on STAC with other PLMs. Best score (except H_{ora}) in each row is underlined.

Recall and Precision of indirect and direct edges in LAST and FT models

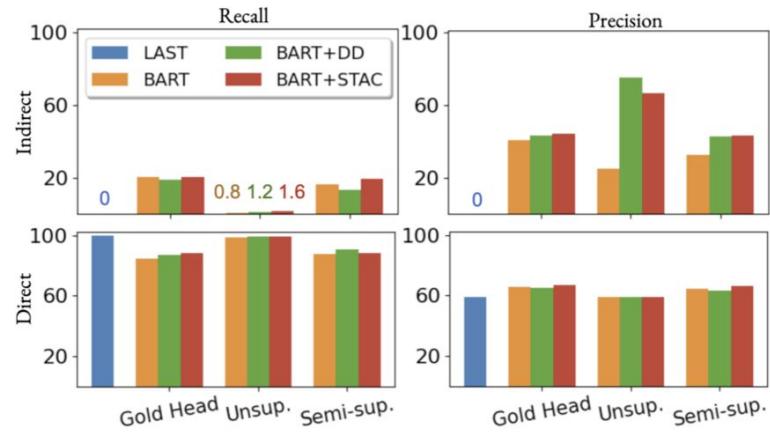


Figure 6: Comparison of recall (left) and precision (right) of indirect (top) and direct (bottom) links in LAST baseline and SO fine-tuned models on STAC.

Recall and Precision of indirect and direct edges in LAST and FT models, whole test vs. trees

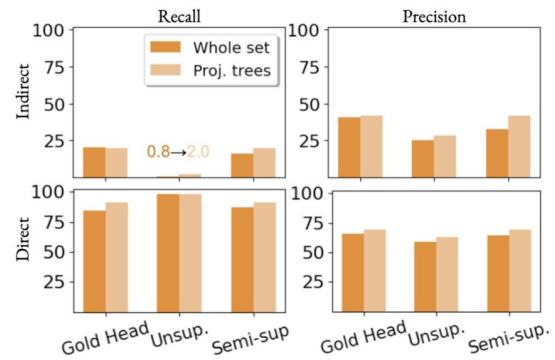


Figure 7: Recall and precision metrics in whole test set (darker color) vs. projective tree subset (brighter color), with BART model.

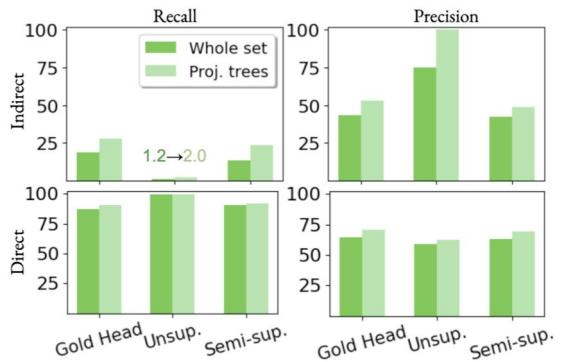


Figure 8: Recall and precision metrics in whole test set (darker color) vs. projective tree subset (brighter color), with BART+SO-DD model.

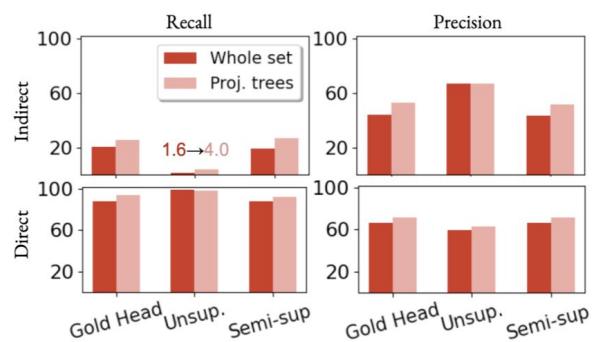


Figure 9: Recall and precision metrics in whole test set (darker color) vs. projective tree subset (brighter color), with model BART+SO-STAC.