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Dialogues

Fig: Dialog forms, from Internet

CONTEXT & MOTIVATION

- Explosion of dialogue data
- Form: In person, calls, texts (online forums)
- Objective: chit-chats, task-specific (e.g.: restaurant reservation)

- Simple surface-level features not sufficient (Qin et al., 2017)
→ Need semantic & pragmatic relations, for instance discourse analysis

2

https://doi.org/10.18653/v1/P17-1090


Dialogues

Fig: Dialog forms, from Internet

CONTEXT & MOTIVATION

- Explosion of dialogue data
- Form: In person, calls, texts (online forums)
- Objective: chit-chats, task-specific (e.g.: restaurant reservation)

- Simple surface-level features not sufficient (Qin et al., 2017)
→ Need semantic & pragmatic relations, for instance discourse analysis

- Issue: data sparsity 
- RST-DT (Wall Street Journal): 21.8k discourse units
- STAC (The Settlers of Catan board game, Asher et al., 2016): ~10k 

discourse units
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Discourse Structure in Dialogues

SEGMENTED DISCOURSE REPRESENTATION T

- SDRT Framework (Asher et al., 2003)
- Presented as graph, with nodes represent discourse 

units (DU) and edges rhetorical relations

Fig: Lozenge-shaped discourse structure, STAC.

Dialogue Specificities

- Generally less structured, informal linguistic 
usage (Sacks et al., 1978)

- Structural particularities, e.g., lozenge-shape
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SEGMENTED DISCOURSE REPRESENTATION THEORY

Fig: Excerpt s2-leagueM-game4, STAC.

https://books.google.fr/books/about/Logics_of_Conversation.html?id=VD-8yisFhBwC&redir_esc=y
https://pure.mpg.de/rest/items/item_2376846_3/component/file_2376845/content


Discourse Structure in PLMs

Fig: Top: illustration of depdency structure in SDRT;
Bottom: Transformer-based model and tasks

EMPIRICAL INSPIRATION

- BERTology Research
- Discourse probing/structure extraction tasks in Pre-Trained 

Language Models (PLMs): 
Koto et al., 2021, Pandia et al.. 2021, Huber&Carenini 2022
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Fig: Top: illustration of depdency structure in SDRT;
Bottom: Transformer-based model and tasks

⇒ Our Task: extract discourse structure in dialogues from PLMs
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Discourse Structure in PLMs

EMPIRICAL INSPIRATION

- BERTology Research
- Discourse probing/structure extraction tasks in Pre-Trained 

Language Models (PLMs): 
Koto et al., 2021, Pandia et al.. 2021, Huber&Carenini 2022

- Structure extraction from attention matrices: Liu&Lapata2018

https://aclanthology.org/2021.naacl-main.301.pdf
https://aclanthology.org/2021.conll-1.29.pdf
https://arxiv.org/pdf/2204.04289.pdf
https://doi.org/10.1162/tacl_a_00005


TASK FORMULATION

- Dialogue with n elementary discourse units (EDUs) D={e1, e2, …, en} 
- Extract a Directed Acyclic Graph (DAG) connecting the n EDUs that best represent 

SDRT structure

- Simplifications
- Complex discourse units (CDUs) → EDUs
- DAG → Dependency Trees, as in Muller2012, Li2014, Afantenos2012, Shi2019, 

Wang2021 (note that Perret2016 predict DAGs)
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Discourse Structure as DAG in Dialogues

https://aclanthology.org/C12-1115
https://doi.org/10.3115/v1/P14-1003
https://www.pure.ed.ac.uk/ws/files/11999947/lascarides_seinedial3.pdf
https://dl.acm.org/doi/abs/10.1609/aaai.v33i01.33017007
https://www.ijcai.org/proceedings/2021/0543.pdf
https://doi.org/10.18653/v1/N16-1013


PIPELINE

Which PLM? How to build trees? Which attention head?

D
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Which attention head?
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METHODS (1) – WHICH KINDS OF PLMS TO USE?

- Pre-Trained Models

- BART (Lewis et al., 2019): encoder-decoder 

- Others: DialoGPT (Zhang et al., 2020), DialogLM (Zhong et al., 2022)

Fig: BART from The Simpsons; BART model. Source.
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https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/pdf/1911.00536.pdf
https://arxiv.org/pdf/2109.02492.pdf
https://towardsdatascience.com/machine-learnings-obsession-with-kids-tv-show-characters-728edfb43b3c


METHODS (1) – WHICH KINDS OF PLMS TO USE?

- Fine-Tuning Tasks & Corpora
- Summarization: CNN-Dailymail, SAMSum
- Question-Answering: SQuAD2
- Sentence Ordering (SO): STAC, DailyDialog
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METHODS (1) – WHICH KINDS OF PLMS TO USE?

- Fine-Tuning Tasks & Corpora
- Summarization: CNN-Dailymail, SAMSum
- Question-Answering: SQuAD2
- Sentence Ordering (SO): STAC, DailyDialog

- Barzilay&Lapata 2008, Chowdhury et al., 2021
- Mixed shuffling strategies: pair-wise, inter-block, inter-speaker shuffling

Fig: partial, minimal-pair, block, speaker-turn shuffling strategies.
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PIPELINE

Which PLM? How to build trees? Which attention head?

D
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METHODS (2) – HOW TO DERIVE TREES FROM ATTENTION HEADS?

- From each attention matrix
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METHODS (2) – HOW TO DERIVE TREES FROM ATTENTION HEADS?

- From each attention matrix
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METHODS (2) – HOW TO DERIVE TREES FROM ATTENTION HEADS?

- From each attention matrix
→ Heads x Layers candidates
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PIPELINE

Which PLM? How to build trees? Which attention head?

D
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METHODS (3) – HOW TO FIND THE BEST HEADS?

- Discourse extraction method operates on single self-attention matrices

→ BART:192 candidate matrices (16 heads x 12 layers) 

- Question: which heads / layers contain most discourse information?

heads 

la
ye

rs
  

High performance

Low performance
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METHODS (3) – HOW TO FIND THE BEST HEADS?

- Unsupervised Selection
- Dependency Attention Support (DAS) score

Where Tg is Eisner extracted Tree for dialog g. 
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METHODS (3) – HOW TO FIND THE BEST HEADS?

- Unsupervised Selection
- Dependency Attention Support (DAS) score

Where Tg is Eisner extracted Tree for dialog g. 
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METHODS (3) – HOW TO FIND THE BEST HEADS?

- Semi-supervised Selection
- Use annotated subset of {10, 30, 50} examples in validation set
- Obtain best performing head, apply on test set
- Execute 10 runs for each subset

heads 

la
ye

rs
  

apply on

Validation set Test set

23

Discourse Structure in Dialogues from PLMs



EXPERIMENTAL SETTINGS

- Datasets: STAC (Settlers of Catan board game)

- PLM: BART

- Baselines & Supervised Discourse Parsers
- LAST – unsupervised baseline
- Deep Sequential (Shi2019), Graph Neural Network 

(Wang2021)  – gap with supervised parsers

- Evaluation Metrics
- Micro-F1
- Unlabeled attachment score (UAS)
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RESULTS (1) – UNSUPERVISED DAS

- LAST: unsupervised baseline
- H_g: global head
- H_l: local head
- H_ora: oracle head

- BART underperform LAST
- FT on summarization (+CNN, +SAMSum) and QA 

(+SQuAd2): marginal improvements
- FT on SO (+SO-DD, +SO-SATC) surpass LAST, but 

less than oracle head
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RESULTS (2) – SEMI-SUPERVISED METHOD

- Use a few (10/30/50) annotated examples in 
validation set to help find the best attention head 

- All 3 models > LAST
- With 50 examples, F1 improve from 56.8 → 59.3, 

achieve almost oracle performance (59.5)
- Improvement is consistent acros different models 

and validation sizes, with smaller std-dev.
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ANALYSIS (1) – EFFECTIVENESS OF DAS

- DAS score matrices
- Yellow     : DAS selected heads
- Green      : Oracle heads

Heatmap: top to bottom: layer 12 to 1, left to right: head 1 
to 16.
Boxplot: head-aggregated UAS scores. Red: BART model; 
green: BART+SO-DD; orange: BART+SO-STAC.
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ANALYSIS (1) – EFFECTIVENESS OF DAS

- DAS score matrices
- Yellow     : DAS selected heads
- Green      : Oracle heads

Heatmap: top to bottom: layer 12 to 1, left to right: head 1 
to 16.
Boxplot: head-aggregated UAS scores. Red: BART model; 
green: BART+SO-DD; orange: BART+SO-STAC.

→ Disocurse information consistently located in deeper layers 

→ Oracle heads situated in the same attention matrices for 3 models

→ DAS != Oracle, but among top 10% best heads, reasonable approximation
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ANALYSIS (2) – DOCUMENT & ARC LENGTHS

- Test if our approach can predict distant edges (compared to LAST with 0 disant edge)

Arc Distance
- Direct arcs: high UAS score (>80%)
- Dist >=2, performance drops
- Dist > 6, almost all fail

←: UAS and arcs’ distance, 
x-axis distance, y-axis: UAS 
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ANALYSIS (2) – DOCUMENT & ARC LENGTHS

- Test if our approach can predict distant edges (compared to LAST with 0 disant edge)

←: UAS and arcs’ distance, 
x-axis distance, y-axis: UAS

→: averaged UAS for different length 
of document,
x-axis: document length, y-axis: UAS.

Arc Distance
- Direct arcs: high UAS score (>80%)
- Dist >=2, performance drops
- Dist > 6, almost all fail

Document Length
- 5 even intervals [2, 37]
- |doc| < 23 EDUs, all models better than LAST
- [23, 30] worse than bsl, over-predict distant arcs
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Table: Trees and non-tree statistics in STAC.

ANALYSIS (3) – EXAMINATION ON PROJECTIVE TREES

- Proportion of trees vs. graphs in STAC
- Simplified assumptions
- Direct and fair comparison
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Table: Trees and non-tree statistics in STAC.

Table: Micro-F1 on STAC projective tree subset.

ANALYSIS (3) – EXAMINATION ON PROJECTIVE TREES

- Proportion of trees vs. graphs in STAC
- Simplified assumptions
- Direct and fair comparison

- Unsupervised and Semi-supervised Experiments

- Results are improved: F1 from 59% → 68%
- Tree Properties (Ferracane et al., 2019)

- Avg. branch, height, % of leaf,  normalized arc, 
“vacuous” trees (details in appendix)

- → Well aligned with gold trees
- → “Thinner” and “taller” 
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CONCLUSION & FUTURE WORK

- Detection the presence of discourse information in PLMs
- Design of sentence-ordering fine-tuned task tailored for dialogue 

structures
- Extraction of naked discourse structure with unsupervised and 

semi-supervised strategies
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Future work
- Explore graph-like structures by extending treelike structures
- Perform full discourse parsing by adding relation prediction
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CONCLUSION & FUTURE WORK

- Detection the presence of discourse information in PLMs
- Design of sentence-ordering fine-tuned task tailored for dialogue 

structures
- Extraction of naked discourse structure with unsupervised and 

semi-supervised strategies
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Thank you!



Appendices
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Properties of 48 projective dependency trees GT vs. extracted trees from PLMs

Illustration of “vacuous” trees (Ferracane 2018)
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Qualitative investigation of well predicted example
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Fig: Well predicted: pilot02-4, STAC. UAS: 90%. In red: false positive; in blue: false negative.



Qualitative investigation of badly predicted examples
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Fig: Badly predicted: s1-league3-game3, STAC. UAS: 
25%. Failed in predicting distant edges.

Fig: Badly predicted: s2-leagueM-game4, STAC. UAS: 20%. 
Failed in predicting “lozenge” shape.



Results with other PLMs
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Recall and Precision of indirect and direct edges in LAST and FT models
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Recall and Precision of indirect and direct edges in LAST and FT models, whole test vs. trees
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