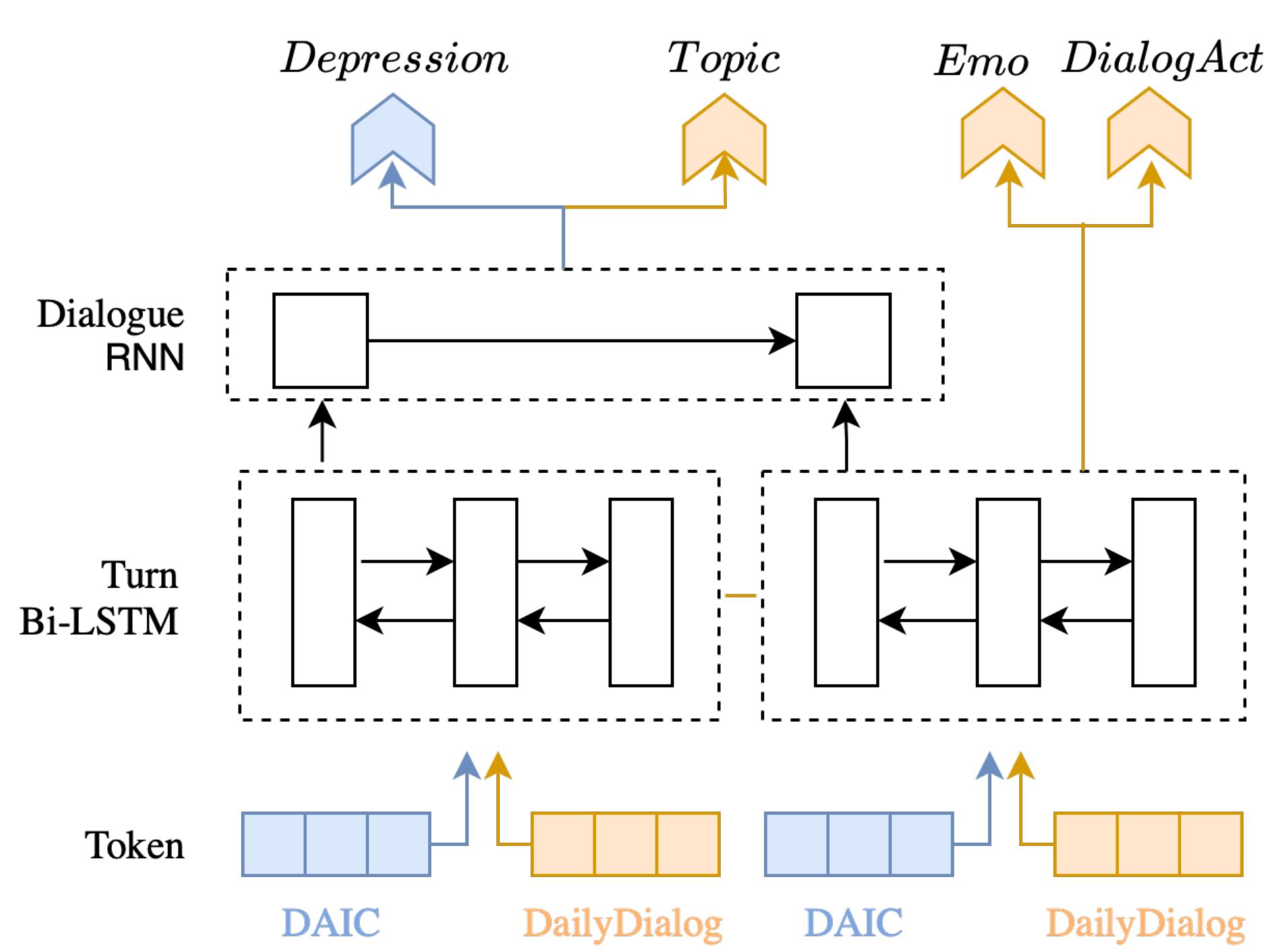


Multi-Task Learning for Depression Detection in Dialogs

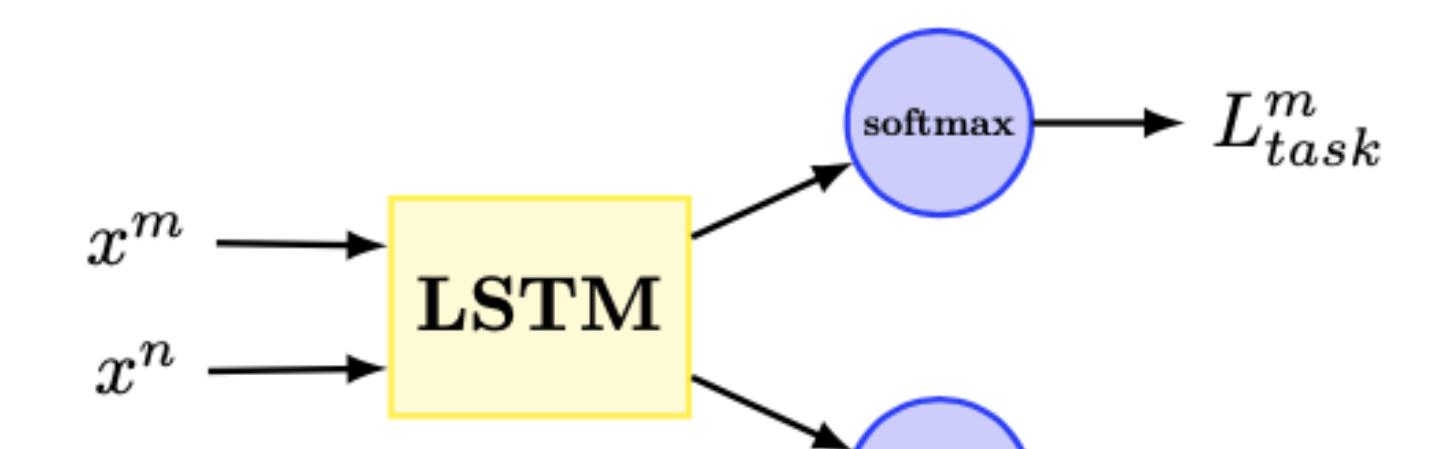
Chuyuan Li, Chloé Braud, Maxime Amblard


{chuyuan.li, maxime.amblard}@univ-lorraine.fr
chloe.braud@irit.fr

Introduction

- Depression is a serious mental illness that impacts the way people communicate, through **emotions**, the way they interact with others, *etc.*
 - Affects $\approx 5\%$ of adults worldwide
 - Hard to diagnose, with about half the cases not detected
- Automated detection of depression mostly focused on social media data and online forums [2, 1]
- Objectives: depression detection within dialog transcriptions – a more realistic scenario less studied due to **data sparsity**
 - Multi-task learning with hierarchical structure (emotion + shallow dialog structures)

Model


Corpus

- DAIC-WOZ** [3], 189 sessions, two-party interviews between participants and virtual interviewer Ellie
- DailyDialog** [4], 13,118 two-party written dialogs, multi-level annotation: dialog act, emotion, topics

Architecture & Tasks

1. Multi-task Learning (MTL)

- Shared representations benefit related tasks
- Tackles data sparsity issue, reduces risk of overfitting
- Fully-shared schema (i.e., hard-parameter): simpler than shared-private but effective
- Hierarchical structure: *turn* and *dialog* levels

2. Main Task & Auxiliary Tasks

- Main: Depression Detection @DAIC-WOZ, depressive note PHQ-9 (positive class: ≥ 10)
- Auxiliary @DailyDialog
 - Speech-turn* level: Emotion Classification ($N = 7$), Dialog Act Classification ($N = 4$)
 - Dialog* level: Topic Classification ($N = 10$)

3. Implementation with AllenNLP library

- Turn Bi-LSTM*: 1 hidden layer, 128 output neurons
- Dialog RNN*: tune layer {1, 2, 3}, hidden size {128, 256, 512}
- Optimized on macro-F1; $L = \sum loss_{task_i}$; $lr = 1e-3$; epoch=100 + early stopping

Results & Analysis

	F ₁	Prec.	Rec.	Acc.
BSL Majority vote	41.3	35.1	50.0	70.2
<i>State-of-the-art</i>				
NHN (baseline) [5]	45	-	50	-
HCAN [5]	63	-	66	-
HAN+L [6]	70	-	70	-
<i>Ours</i>				
STL Depression	43.9	44.5	47.5	63.8
MTL +Emo	55.5	56.2	61.6	70.2
MTL +Top	55.6	55.9	56.8	59.6
MTL +Diag	60.8	60.6	61.4	66.0
MTL +Emo+Diag+Top	70.6*	70.1	71.5*	74.5

⇒ Indiv task helps: emo (+11.6%), top (+11.7%), diag (+16.9%)

⇒ Combination of all tasks: best +26.7% comp. to STL

		F ₁	Prec.	Rec.	Acc.
MTL	+Emo+Diag+Top	70.6	70.1	71.5	74.5
MTL	+Emo+Top	64.4	64.4	64.4	70.2
MTL	+Diag+Top	63.7	78.1	62.8	76.6

Ablation study

- Remove emo/diag ($\approx 6\%$) at *turn* level, keep top at *diag* level
- ⇒ Effectiveness of hierarchical structure

Auxiliary tasks performance

- topic and diag worse than STL, since optimized on depression task
- emo better in MTL ⇒ mutual benefits with depression

Conclusion & Future Work

- Correlation b/t depression and emotion
- Relevance of features linked to dialog structure – dialog acts and topics
- Extensions**
 - more refined dialog structure
 - exploration of depression severity via cascading structure
 - generalization to other mental health disorders

References

- Benton et al. Mtl for mental health conditions with limited social media data. 2017.
- Coppersmith et al. Clpsych 2015 shared task: Depression and ptsd on twitter. 2015.
- Gratch et al. The distress analysis interview corpus of human and computer interviews. 2014.
- Li et al. DailyDialog: A manually labelled multi-turn dialogue dataset. 2017.
- Mallol-Ragolta et al. A hierarchical attention network-based approach for depression detection from transcribed clinical interviews. 2019.
- Xezonaki et al. Affective conditioning on hierarchical attention networks applied to depression detection from transcribed clinical interviews. 2020.