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Schizophrénie

- Un trouble mental sévere

- Symptomes : les idées délirantes, les hallucinations,

- Enjeu : identification automatique a partir de la production
langagiére, écrite ou orale
pour les médecins
- amélioration la en
géneéral
- adaptation des a des parties de la population
affectée



Etat de l'art

Classification automatique de SCZ' fondée sur des données
langagiéres :

1SCZ : personnes avec schizophrénie



Etat de l'art

Classification automatique de SCZ' fondée sur des données
langagiéres :
- [Strous et al., 2009] : écrits, traits lexicaux, Acc. = 83,3%
- [Mitchell et al., 2015] : tweets, traits lexicaux, Acc. = 82,3%
- [Kayi et al., 2017] : tweets, traits morpho-syntaxiques et
syntaxiques, F1 = 81,65%
- [Allende-Cid et al,, 2019] : textes narratifs, traits
morpho-syntaxiques, F1 = 82,8%

1SCZ : personnes avec schizophrénie



Etat de l'art

Classification automatique de SCZ' fondée sur des données
langagiéres :
- [Strous et al., 2009] : écrits, traits lexicaux, Acc. = 83,3%
- [Mitchell et al., 2015] : tweets, traits lexicaux, Acc. = 82,3%
- [Kayi et al., 2017] : tweets, traits morpho-syntaxiques et
syntaxiques, F1 = 81,65%
- [Allende-Cid et al,, 2019] : textes narratifs, traits
morpho-syntaxiques, F1 = 82,8%

= : comparaisons difficiles

1SCZ : personnes avec schizophrénie
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- S'intéresser au
- 1¢ approximation : isoler les tours de parole (TDP) de chaque
locuteur :
1. Extraire les

2. Concaténer les TDP ( )

3. Obtenir une instance de classification : ou

4. Classifier les instances dans la (SCZ) ou
(TEm)

5. Obtenir un et analyser



- S'intéresser au
- 1¢ approximation : isoler les tours de parole (TDP) de chaque
locuteur :
1. Extraire les

2. Concaténer les TDP ( )

3. Obtenir une instance de classification : ou

4. Classifier les instances dans la (SCZ) ou
(TEm)

5. Obtenir un et analyser

= Langage plus naturel que les écrits / textes narratifs
= Ignorance les TDP de PSY



Corpus




Corpus SLAM

entre PSY? et SCZ (ou TEM).
- Entretiens enregistrés avec un double systéeme d’eye-tracker
(données non-utilisées ici)
- Thématique abordée : du participant
- PSY non engagé, parole du participant se rapproche d'un

2PSY : psychologue
3TEM : témoins



Exemples dialogue

PSY : Et donc la vous avez voir un atelier euh... c’est quoi
c'est...

SCZ : Oui donc la je suis allée en atelier therapeutique euh
euhh comment ils appellent ¢a.. pas entretien théerapeu-
tique... j'ai euh...

PSY : Education thérapeutique... c'est ca

PSY-TEM
PSY : Vous voulez faire quoi apres
TEM : Euhh je voudrais faire le master de N. de psychopatho
de la cognition et des interactions
PSY : Mmh mmh



Recueil des données

- 1 psychologue
- 2 groupes:
- PSY-SCZ : 18 entretiens
- PSY-TEM : 23 entretiens (la plupart des étudiants, )

- 15 hommes dans chaque groupe ( )



Recueil des données

- 1 psychologue
- 2 groupes:
- PSY-SCZ: 18 entretiens
- PSY-TEM : 23 entretiens (la plupart des étudiants, )
- 15 hommes dans chaque groupe ( )
- Caractéristiques générales
‘ TDP/doc mots/phrase long. mots mots gram.
SCz | ~200 13,4 4,27 56%
TEM ~ 3472 10,5 424 51%




Expérience




Contenu de l'expérience

1. : bag-of-words (bow), n-gram,
treelet

2.

3. : Naive-Bayes, Régression logistique,

SVM



Représentation des données

- Traits lexicaux

- bow

- n-gram (n=23)
- Traits syntaxiques

- treelet
(parseur syntaxique UDPipe entrainé sur Spoken-French 2.5)


http://ufal.mff.cuni.cz/udpipe
https://tinyurl.com/UniversalDependencies-French-S

Représentation des données

- Traits lexicaux

- bow

- n-gram (n=23)
- Traits syntaxiques

- treelet
(parseur syntaxique UDPipe entrainé sur Spoken-French 2.5)

- Combinaison de traits (toutes)
- bow + treelet
- bow + n-gram
- n-gram+ treelet
- bow +n-gram+ treelet

= 7 combinaisons de traits


http://ufal.mff.cuni.cz/udpipe
https://tinyurl.com/UniversalDependencies-French-S

Retour sur les treelet

- 1-token treelet:
NOUN, VERB

1



Retour sur les treelet

- 1-token treelet:
NOUN, VERB
- 2-token treelet:

Nsub
VERB ——% NOUN

1



Retour sur les treelet

- 1-token treelet:

- 2-token treelet:

- 3-token treelet:

Max
NOUN

mange
VERB

pomme
NOUN

NOUN, VERB

N
VERB % Noun

N D
NOUN <=2 vers 2% Noun,

P Nsubj
PRON +—2

NOUN VERB

Son .. chat .. dort
PRON .. NOUN .. VERB

1



Sélection de traits

- Probléme : peu de données, dimensions trés élevées

“https://scikit-learn.org/
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Sélection de traits

- Probléme : peu de données, dimensions trés élevées

- Sélection : scikit-learn @eat
feature selection.SelectFromModel*
- Sans seuil (1e — 5)
- 12 seuils : moyenne, médiane, 10 valeurs distribués entre [1e — 5,
50° trait le plus important]

= 13 sélections par catégorie de traits
(bow, n-gram, treelet)

“https://scikit-learn.org/


https://scikit-learn.org/

Sélection de traits

Nombre de traits a l'origine ("Horig”") et sélectionnés ("#sélec”) par
les classifieurs :

Type de traits Classifieur ~ #Orig. Seuil #Sélec. Ratio %
bow NB 6504 9 6488 99,75
bow SVM 6504 med. 3254 50,03
n-gram SVM 118473 98
treelet SVM 16865 3 675
bow + treelet NB 23369 11684 49,99
bow + treelet SVM 23369 moy. 3434 14,69
bow + n-gram SVM 124977 4 491
n-gram + treelet SVM 135338 4 552
bow + n-gram + treelet SVM 141842 5 257




Classification

- A lextérieur, 1 sous-ensemble parmi N conservé pour l'évaluation
- Alintérieur, validation croisée en M sous-ensembles
ciciN=M=5

14



Classification

- A lextérieur, 1 sous-ensemble parmi N conservé pour l'évaluation
- Alintérieur, validation croisée en M sous-ensembles
ciciN=M=5

- Classifieurs : scikit-learn @ tearn

- Naive Bayes : « € {01, 0.01, 0.001}
- Régression logistique : C € {100}
- SVM: C € {5, 100, 1000}

= 3 classifieurs
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Classification

- A lextérieur, 1 sous-ensemble parmi N conservé pour l'évaluation
- Alintérieur, validation croisée en M sous-ensembles
ciciN=M=5

- Classifieurs : scikit-learn @ tea
- Naive Bayes : « € {01, 0.01, 0.001}
- Régression logistique : C € {100}
- SVM: C € {5, 100, 1000}

= 3 classifieurs

7 combinaisons de traits x
13 sélections de traits x

3 classifieurs

273 réalisations

14



Résultats




Systémes de référence

- Par la
- Par

- taille moyenne des mots
- taille moyenne des mots au dessus de la taille moyenne de tous

les mots
- Ratio : #je | #tu dans chaque document
Acc. Prec. Rec.
Majorité 56,10
long. mot 4951 17,21 11,11

> long. moy. mot 52,43 3743 22,78
ratio je/tu




Meilleurs systémes

- Meilleur systéme : NB avec (acc. = 93,66, F; = 92,21)
- SVM avec bow (acc. = 90,98, F; =90, 38)
- [Allende-Cid et al., 2019] : SVM avec bow (F1=87,5)
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Meilleurs systémes

- Meilleur systéme : NB avec (acc. = 93,66, F; = 92,21)
- SVM avec bow (acc. = 90,98, F; =90, 38)
- [Allende-Cid et al., 2019] : SVM avec bow (F1=87,5)
- Second meilleur systéeme : avec

(acc. = 92,20, F; = 90,38)
- Autres combinaisons de traits : meilleurs scores avec
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Exactitude moyenne avec ou sans sélection ("SVM” "MaxEnt” et "NB")
pour chaque combinaison de traits :

Algorithme SVM SVM MaxEnt NB
Sélection non oui oui oui
bow 90,00 90,98 87,07

n-gram 68,78 81,71 79,76 65,61
treelet 61,46 66,83 58,29 58,05
bow+n-gram 80,49 88,54 86,59 70,49
bow+treelet 87,07 88,78 84,88
n-gram+treelet 68,54 80,73 77,56 62,20

bow+n-gram+treelet 80,98 85,85 84,15 77,07




NB et ow et bow+treelet

Comparaison de classifieurs NB et SVM : tests de Student

Groupe d'échantillons t-statistique p-value d de Cohen Taille d'effet
bow_nb bow_svm 2,74 1,23
bow+treelet_nb bow+treelet_svm 2,10 0,94
bow_nb bow+treelet_nb 1,21 0,24 0,54 moyen
bow_svm bow+treelet_svm 1,49 0,15 0,67 moyen




NB et SVM, bow et bow+treelet

Comparaison de classifieurs NB et SVM : tests de Student

Groupe d'échantillons t-statistique p-value d de Cohen Taille d'effet
bow_nb bow_svm 2,74 1,23
bow+treelet_nb bow+treelet_svm 2,10 0,94
bow_nb bow+treelet_nb 1,21 0,24 0,54 moyen
bow_svm bow+treelet_svm 1,49 0,15 0,67 moyen
= permet des performances a

celles obtenues avec



NB et SVM, bow et bow+treelet

Comparaison de classifieurs NB et SVM : tests de Student

Groupe d'échantillons t-statistique p-value d de Cohen Taille d'effet
bow_nb bow_svm 2,74 1,23
bow+treelet_nb bow+treelet_svm 2,10 0,94
bow_nb bow+treelet_nb 1,21 0,24 0,54 moyen
bow_svm bow+treelet_svm 1,49 0,15 0,67 moyen
= permet des performances a

celles obtenues avec
= La perte de performance avec les treelet n'est pas significative.



Analyse des traits




Traits lexicaux

- Test de corrélation de Spearman pour évaluer la pré-dominance
de certains traits lexicaux
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Traits lexicaux

- Test de corrélation de Spearman pour évaluer la pré-dominance
de certains traits lexicaux

- Exemples avec p-valeur < 0,05 et coefficient |p| > 0,3

Vocabulaire p  p-value Vocabulaire p  p-value
Psycho
maladie 0,540 <1le—3 psychologie —0,536 <1e—3

hospitalisé 0,509 <1e-3 psychologue —0,453 0,002
hallucinations 0,420 0,006

Déictique
Education 0,635 <1le—5
master —0,505 < le—3 0,613 <1le—5
concours —0,496 <le—3 t/tu —0,467 0,002

fac  —0,490 0,001 nous —0,342 0,028
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Traits syntaxiques

: marqueur fort pour les
(Ex. : "(j)ai fait” "(c')est (pas) gagné”)
(Ex. : "ca va”, "(je) sais pas”)
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Traits syntaxiques

: marqueur fort pour les
(Ex. : "(j)ai fait” "(c')est (pas) gagné”)
(Ex. : "ca va”, "(je) sais pas”)
- Nom : marqueur fort pour les TEM

- Relation ExpL capture des nominaux explicatifs ou pléonastiques
- Relation CasE est traitée comme le dépendant du nom

20



Conclusion




Conclusion

- Premier systeme identifiant des particularismes dans le discours
des SCZ en
- Tester différentes
- Informations lexicales
- Syntaxiques
- Tester differents (NB, SVM et Régression logistique)
lexicaux dans les deux groupes

+ SCZ : environnement médical
- TEM : études et scolarité

21



- Tester d'autres : Random forest, Perceptrons
- Tester d'autres
- Linguistiques : lexicaux (mots déictiques), sémantiques
(connecteurs), etc.
- Extra linguistiques : résultats aux tests neuro-cognitifs

: classification des TDP et pas cTDP

22



Merci !
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