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Schizophrénie

• Un trouble mental sévère
• Symptômes : les idées délirantes, les hallucinations, le discours
désorganisé

• Enjeu : identification automatique à partir de la production
langagière, écrite ou orale

• aide décisive vers un diagnostic pour les médecins
• amélioration la compréhension du fonctionnement du langage en
général

• adaptation des systèmes de TAL à des parties de la population
affectée

2



Schizophrénie

• Un trouble mental sévère
• Symptômes : les idées délirantes, les hallucinations, le discours
désorganisé

• Enjeu : identification automatique à partir de la production
langagière, écrite ou orale

• aide décisive vers un diagnostic pour les médecins
• amélioration la compréhension du fonctionnement du langage en
général

• adaptation des systèmes de TAL à des parties de la population
affectée

2



État de l’art

Classification automatique de SCZ1 fondée sur des données
langagières :

• [Strous et al., 2009] : écrits, traits lexicaux, Acc. = 83,3%
• [Mitchell et al., 2015] : tweets, traits lexicaux, Acc. = 82,3%
• [Kayi et al., 2017] : tweets, traits morpho-syntaxiques et
syntaxiques, F1 = 81,65%

• [Allende-Cid et al., 2019] : textes narratifs, traits
morpho-syntaxiques, F1 = 82,8%

⇒ Corpus de nature différente : comparaisons difficiles

1SCZ : personnes avec schizophrénie
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Approche



Approche

• S’intéresser au dialogue
• 1e approximation : isoler les tours de parole (TDP) de chaque
locuteur :
1. Extraire les TDP
2. Concaténer les TDP (cTDP)
3. Obtenir une instance de classification : cTDP-SCZ ou cTDP-TEM
4. Classifier les instances dans la classe positive (SCZ) ou négative
(TEM)

5. Obtenir un modèle et analyser

⇒ Langage plus naturel que les écrits / textes narratifs
⇒ Ignorance les TDP de PSY
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Corpus



Corpus SLAM

• Entretiens semi-dirigés entre PSY2 et SCZ (ou TEM)3.
• Entretiens enregistrés avec un double système d’eye-tracker
(données non-utilisées ici)

• Thématique abordée : le quotidien du participant
• PSY non engagé, parole du participant se rapproche d’un
monologue.

2PSY : psychologue
3TEM : témoins

6



Exemples dialogue

PSY-SCZ
PSY : Et donc là vous avez voir un atelier euh... c’est quoi
c’est...
SCZ : Oui donc là je suis allé en atelier thérapeutique euh
euhh comment ils appellent ça... pas entretien thérapeu-
tique... j’ai euh...
PSY : Education thérapeutique... c’est ça

PSY-TEM
PSY : Vous voulez faire quoi après
TEM : Euhh je voudrais faire le master de N. de psychopatho
de la cognition et des interactions
PSY : Mmh mmh
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Recueil des données

• 1 psychologue
• 2 groupes :

• PSY-SCZ : 18 entretiens
• PSY-TEM : 23 entretiens (la plupart des étudiants, biais lexicaux)

• 15 hommes dans chaque groupe (biais en termes de genre)

• Caractéristiques générales
TDP/doc mots/phrase long. mots mots gram.

SCZ ∼ 200 13,4 4,27 56%
TEM ∼ 342 10,5 4,24 51%
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Expérience



Contenu de l’expérience

1. Représentation des données : bag-of-words (bow), n-gram,
treelet

2. Sélection de traits
3. Modèles de classification : Naïve-Bayes, Régression logistique,
SVM
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Représentation des données

• Traits lexicaux
• bow
• n-gram (n=2,3)

• Traits syntaxiques
• treelet
(parseur syntaxique UDPipe entraîné sur Spoken-French 2.5)

• Combinaison de traits (toutes)
• bow + treelet
• bow + n-gram
• n-gram + treelet
• bow + n-gram + treelet

⇒ 7 combinaisons de traits
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Retour sur les treelet

• 1-token treelet : POS tag
Noun, Verb

• 2-token treelet : relation typée entre une tête et un
dépendant

Verb Nsubj−−−→ Noun
• 3-token treelet : relation une tête et deux dépendants /
chaîne de dépendances

Noun Nsubj←−−− Verb Dobj−−→ Noun,
Pron Poss←−− Noun Nsubj←−−− Verb

Max … mange … pomme
Noun … Verb … Noun

nsubj dobj

Son … chat … dort
Pron … Noun … Verb

poss nsubj
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Sélection de traits

• Problème : peu de données, dimensions très élevées

• Sélection : scikit-learn
feature_selection.SelectFromModel4

• Sans seuil (1e− 5)
• 12 seuils : moyenne, médiane, 10 valeurs distribués entre [1e− 5,
50e trait le plus important]

⇒ 13 sélections par catégorie de traits
(bow, n-gram, treelet)

4https://scikit-learn.org/
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Sélection de traits

Nombre de traits à l’origine (”#orig.”) et sélectionnés (”#sélec”) par
les classifieurs :

Type de traits Classifieur #Orig. Seuil #Sélec. Ratio %

bow NB 6504 9 6488 99,75
bow SVM 6504 méd. 3254 50,03
n-gram SVM 118473 8 98 0,08
treelet SVM 16865 3 675 4,00

bow + treelet NB 23369 8 11684 49,99
bow + treelet SVM 23369 moy. 3434 14,69
bow + n-gram SVM 124977 4 491 0,39
n-gram + treelet SVM 135338 4 552 0,41
bow + n-gram + treelet SVM 141842 5 257 0,18
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Classification

• Validation croisée enchâssée
• À l’extérieur, 1 sous-ensemble parmi N conservé pour l’évaluation
• À l’intérieur, validation croisée en M sous-ensembles
• ici N = M = 5

• Classifieurs : scikit-learn
• Naive Bayes : α ∈ {0.1, 0.01, 0.001}
• Régression logistique : C ∈ {100}
• SVM : C ∈ {5, 100, 1000}

⇒ 3 classifieurs

Total : 7 combinaisons de traits ×
13 sélections de traits ×
3 classifieurs
273 réalisations
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Résultats



Systèmes de référence

• Par la classe majoritaire
• Par longueur de mots

• taille moyenne des mots
• taille moyenne des mots au dessus de la taille moyenne de tous
les mots

• Ratio je/tu : #je / #tu dans chaque document

Acc. Prec. Rec.

Majorité 56,10

long. mot 49,51 17,21 11,11
> long. moy. mot 52,43 37,43 22,78
ratio je/tu 72,19 69,87 35,56
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Meilleurs systèmes

• Meilleur système : NB avec bow (acc. = 93, 66, F1 = 92, 21)
• SVM avec bow (acc. = 90, 98, F1 = 90, 38)
• [Allende-Cid et al., 2019] : SVM avec bow (F1 = 87, 5)

• Second meilleur système : NB avec bow+treelet
(acc. = 92, 20, F1 = 90, 38)

• Autres combinaisons de traits : meilleurs scores avec SVM
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Différents jeux de traits

Exactitude moyenne avec ou sans sélection (”SVM”, ”MaxEnt” et ”NB”)
pour chaque combinaison de traits :

Algorithme SVM SVM MaxEnt NB
Sélection non oui oui oui

bow 90,00 90,98 87,07 93,66
n-gram 68,78 81,71 79,76 65,61
treelet 61,46 66,83 58,29 58,05

bow+n-gram 80,49 88,54 86,59 70,49
bow+treelet 87,07 88,78 84,88 92,20
n-gram+treelet 68,54 80,73 77,56 62,20
bow+n-gram+treelet 80,98 85,85 84,15 77,07
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NB et SVM, bow et bow+treelet

Comparaison de classifieurs NB et SVM : tests de Student

Groupe d’échantillons t-statistique p-value d de Cohen Taille d’effet

bow_nb bow_svm 2,74 0,01 1,23 fort
bow+treelet_nb bow+treelet_svm 2,10 0,05 0,94 fort
bow_nb bow+treelet_nb 1,21 0,24 0,54 moyen
bow_svm bow+treelet_svm 1,49 0,15 0,67 moyen

⇒ NB permet des performances significativement supérieures à
celles obtenues avec SVM
⇒ La perte de performance avec les treelet n’est pas significative.
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Analyse des traits



Traits lexicaux

• Test de corrélation de Spearman pour évaluer la pré-dominance
de certains traits lexicaux

• Exemples avec p-valeur < 0, 05 et coefficient |ρ| > 0, 3

Vocabulaire ρ p-value

Douleur
maladie 0,540 < 1e− 3

hospitalisé 0,509 < 1e− 3
hallucinations 0,420 0,006

Éducation
master −0,505 < 1e− 3

concours −0,496 < 1e− 3
fac −0,490 0,001

Vocabulaire ρ p-value

Psycho
psychologie −0,536 < 1e− 3
psychologue −0,453 0,002

Déictique
j’ / je 0,635 < 1e− 5
mon 0,613 < 1e− 5
t’ / tu −0,467 0,002
nous −0,342 0,028
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Traits syntaxiques

• Verb : marqueur fort pour les SCZ
• Verb Aux−−→ Aux (Ex. : ”(j’)ai fait”, ”(c’)est (pas) gagné”)
• Verb Nsubj−−−→ Pron (Ex. : ”ça va”, ”(je) sais pas”)

• Nom : marqueur fort pour les TEM
• Relation Expl capture des nominaux explicatifs ou pléonastiques
• Relation Case est traitée comme le dépendant du nom
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Conclusion



Conclusion

• Premier système identifiant des particularismes dans le discours
des SCZ en français

• Tester différentes représentations :
• Informations lexicales
• Syntaxiques

• Tester différents classifieurs (NB, SVM et Régression logistique)
• Biais lexicaux dans les deux groupes

• SCZ : environnement médical
• TEM : études et scolarité
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Perspectives

• Tester d’autres classifieurs : Random forest, Perceptrons
• Tester d’autres traits :

• Linguistiques : lexicaux (mots déictiques), sémantiques
(connecteurs), etc.

• Extra linguistiques : résultats aux tests neuro-cognitifs

• Introduire le contexte : classification des TDP et pas cTDP
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Merci !
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